966 resultados para Immune mediated hemolytic anemia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticulate formulations for synthetic long peptide (SLP)-cancer vaccines as alternative to clinically used Montanide ISA 51- and squalene-based emulsions are investigated in this study. SLPs were loaded into TLR ligand-adjuvanted cationic liposomes and PLGA nanoparticles (NPs) to potentially induce cell-mediated immune responses. The liposomal and PLGA NP formulations were successfully loaded with up to four different compounds and were able to enhance antigen uptake by dendritic cells (DCs) and subsequent activation of T cells in vitro. Subcutaneous vaccination of mice with the different formulations showed that the SLP-loaded cationic liposomes were the most efficient for the induction of functional antigen-T cells in vivo, followed by PLGA NPs which were as potent as or even more than the Montanide and squalene emulsions. Moreover, after transfer of antigen-specific target cells in immunized mice, liposomes induced the highest in vivo killing capacity. These findings, considering also the inadequate safety profile of the currently clinically used adjuvant Montanide ISA-51, make these two particulate, biodegradable delivery systems promising candidates as delivery platforms for SLP-based immunotherapy of cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atopic, IgE-mediated allergies are one of the major public health problems in Finland and other Western countries. These diseases are characterized by type 2 T helper (Th2) cell predominated immune responses (interleukin-4 (IL-4), IL-5) against ubiquitous environmental allergens. Despite of adequate pharmacological treatment, more than 20% of the patients with allergic rhinitis develop asthma. Allergen specific immunotherapy (SIT) is the only treatment currently available to affect to the natural course of allergic diseases. This treatment involves repeated administration of allergens to the patients either via sublingual route (sublingual immunotherapy, SLIT) or by subcutaneous injections (subcutaneous immunotherapy, SCIT). Successful treatment with SCIT or SLIT has been shown to provide long-term remission in symptoms, and prevent disease progression to asthma, but the immunological mechanisms behind these beneficial effects are not yet completely understood. Increased knowledge of such mechanisms could not only help to improve SIT efficacy, but also provide tools to monitor the development of clinical response to SIT in individual patients, and possibly also, predict the ultimate therapeutic outcome. The aim of this work was to clarify the immunological mechanisms associated with SIT by investigating the specific allergen-induced immune responses in peripheral blood mononuclear cells (PBMC) of allergic rhinitis patients during the course of SLIT and SCIT. The results of this work demonstrate that both therapies induced increases in the protective, Th2-balancing Th1 type immune responses in PBMC, e.g. by up-regulating signaling lymphocytic activation molecule (SLAM) and interferon gamma (IFN-γ) expression, and augmented tolerogenic T regulatory (Treg) cell type responses against the specific allergens, e.g. by increasing IL-10 or Forkhead box P3 (FOXP3) expression. The induction of allergen-specific Th1 and Treg type responses during SLIT were dependent on the treatment dose, favoring high allergen dose SLIT. During SCIT, the early decrease in Th2 type cytokine production - in particular of IL-4 mRNA and IL-4/IFN-γ expression ratio - was associated with the development of good therapeutic outcome. Conversely, increases in both Th2 (IL-5) and Th1 (IFN-γ, SLAM) type responses and IL-10 mRNA production were seen in the patients with less effective outcome. In addition, increase in Th17 type cytokine (IL-17) mRNA production was found in the PBMC of patients with less effective outcome during both SLIT and SCIT. These data strengthen the current hypothesis that immunomodulation of allergen-specific immune responses from the prevailing Th2-biased responses towards a more Th1 type, and induction of tolerogenic Treg cells producing IL-10 represent the two key mechanisms behind the beneficial effects of SIT. The data also give novel insight into the mechanisms why SIT may fail to be effective in some patients by demonstrating a positive correlation between the proinflammatory IL-17 responses, Th2 type IL-5 production and clinical symptoms. Taken together, these data indicate that the analysis of Th1, Th2, Treg ja Th17-associated immune markers such as IL-10, SLAM, IL-4, IL-5 and IL-17 could provide tools to monitor the development of clinical response to SIT, and thereby, predict the ultimate clinical outcome already in the early course of the treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asthma and allergy are common diseases and their prevalence is increasing. One of the hypotheses that explains this trend is exposure to inhalable chemicals such as traffi c-related air pollution. Epidemiological research supports this theory, as a correlation between environmental chemicals and allergic respiratory diseases has been found. In addition to ambient airborne particles, one may be exposed to engineered nanosized materials that are actively produced due to their favorable physico-chemical properties compared to their bulk size counterparts. On the cellular level, improper activity of T helper (Th) cells has been connected to allergic reactions. Th cells can differentiate into functionally different effector subsets, which are identifi ed according to their characteristic cytokine profi les resulting in specifi c ability to communicate with other cells. Th2 cells activate humoral immunity and stimulate eradication of extracellular pathogens. However, persistent predominance of Th2 cells is involved in a development of number of allergic diseases. The cytokine environment at the time of antigen recognition is the major factor determining the polarization of a naïve Th cell. Th2 cell differentiation is initiated by IL4, which signals via transcription factor STAT6. Although the importance of this pathway has been evaluated in the mouse studies, the signaling components involved have been largely unknown. The aim of this thesis was to identify molecules, which are under the control of IL4 and STAT6 in Th cells. This was done by using system-level analysis of STAT6 target genes at genome, mRNA and protein level resulting in identifi cation of various genes previously not connected to Th2 cell phenotype acquisition. In the study, STAT6-mediated primary and secondary target genes were dissection from each other and a detailed transcriptional kinetics of Th2 cell polarization of naïve human CD4+ T cells was collected. Integration of these data revealed the hierarchy of molecular events that mediates the differentiation towards Th2 cell phenotype. In addition, the results highlighted the importance of exploiting proteomics tools to complement the studies on STAT6 target genes identifi ed through transcriptional profi ling. In the last subproject, the effects of the exposure with ZnO and TiO2 nanoparticles was analyzed in Jurkat T cell line and in primary human monocyte-derived macrophages and dendritic cells to evaluate their toxicity and potential to cause infl ammation. Identifi cation of ZnO-derived gene expression showed that the same nanoparticles may elicit markedly distinctive responses in different cell types, thus underscoring the need for unbiased profi ling of target genes and pathways affected. The results gave additional proof that the cellular response to nanosized ZnO is due to leached Zn2+ ions. The approach used in ZnO and TiO2 nanoparticle study demonstrated the value of assessing nanoparticle responses through a toxicogenomics approach. The increased knowledge of Th2 cell signaling will hopefully reveal new therapeutic nodes and eventually improve our possibilities to prevent and tackle allergic infl ammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toxoplasma gondii and Trypanosoma cruzi are intracellular parasites which, as part of their life cycle, induce a potent cell-mediated immunity (CMI) maintained by Th1 lymphocytes and IFN-g. In both cases, induction of a strong CMI is thought to protect the host against rapid parasite multiplication and consequent pathology and lethality during the acute phase of infection. However, the parasitic infection is not eliminated by the immune system and the vertebrate host serves as a parasite reservoir. In contrast, Leishmania sp, which is a slow growing parasite, appears to evade induction of CMI during early stages of infection as a strategy for surviving in a hostile environment (i.e., inside the macrophages which are their obligatory niche in the vertebrate host). Recent reports show that the initiation of IL-12 synthesis by macrophages during these parasitic infections is a key event in regulating CMI and disease outcome. The studies reviewed here indicate that activation/inhibition of distinct signaling pathways and certain macrophage functions by intracellular protozoa are important events in inducing/modulating the immune response of their vertebrate hosts, allowing parasite and host survival and therefore maintaining parasite life cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report that immune complexes of IgM (ICIgM) antibodies and ovalbumin in the form of a precipitate from the equivalence zone induce the generation of reactive oxygen species by rabbit blood polymorphonuclear leucocytes (PMN), as measured by the chemiluminescence (CL) production in the presence of luminol. The kinetics of CL generation induced by ICIgM is quite different from that induced by precipitated immune complexes of IgG (ICIgG): the maximum rate of CL production for ICIgM occurs around 14 min, whereas for ICIgG it occurs about 5 min after incubation with the cells. Also the triggering of the process requires a higher concentration of ICIgM than of ICIgG. Evidence is presented that these effects are not mediated by interaction of the antigen (ovalbumin) with the cell, since immune precipitates of ovalbumin and the F(ab')2 fragment had no effect. Our observations that precipitated ICIgM can also be an effective stimulus for CL generation and thus for O2- production reveal a new functional capability of PMN. These results may have implications for the understanding of the participation of ICIgM (as well as of ICIgG) in inflammatory reactions mediated by PMN in immune complex diseases, and in the mechanisms of defense against microbes and other non-self agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homozygous sickle cell disease (SCD) has a wide spectrum of clinical manifestations. In Brazil, the main cause of death of individuals with SCD is recurrent infection. The CCR5delta32 allele, which confers relative resistance to macrophage-tropic HIV virus infection, probably has reached its frequency and world distribution due to other pathogens that target macrophage in European populations. In the present investigation a relatively higher prevalence (5.1%) of the CCR5delta32 allele was identified, by PCR amplification using specific primers, in 79 SCD patients when compared to healthy controls (1.3%) with the same ethnic background (Afro-Brazilians). Based on a hypothesis that considers SCD as a chronic inflammatory condition, and since the CCR5 chemokine receptor is involved in directing a Th1-type immune response, we suggest that a Th1/Th2 balance can influence the morbidity of SCD. If the presence of the null CCR5delta32 allele results in a reduction of the chronic inflammation state present in SCD patients, this could lead to differential survival of SCD individuals who are carriers of the CCR5delta32 allele. This differential survival could be due to the development of less severe infections and consequently reduced or less severe vaso-occlusive crises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two variants (A and B) of the widely employed Walker 256 rat tumor cells are known. When inoculated sc, the A variant produces solid, invasive, highly metastasizing tumors that cause severe systemic effects and death. We have obtained a regressive variant (AR) whose sc growth is slower, resulting in 70-80% regression followed by development of immunity against A and AR variants. Simultaneously with the beginning of tumor regression, a temporary anemia developed (~8 days duration), accompanied by marked splenomegaly (~300%) and changes in red blood cell osmotic fragility, with mean corpuscular fragility increasing from 4.1 to 6.5 g/l NaCl. The possibility was raised that plasma factors associated with the immune response induced these changes. In the present study, we identify and compare the osmotic fragility increasing activity of plasma fractions obtained from A and AR tumor bearers at different stages of tumor development. The results showed that by day 4 compounds precipitating in 60% (NH4)2SO4 and able to increase red blood cell osmotic fragility appeared in the plasma of A and AR tumor bearers. Later, these compounds disappeared from the plasma of A tumor bearers but slightly increased in the plasma of AR tumor bearers. Furthermore, by day 10, compounds precipitating between 60 and 80% (NH4)2SO4 and with similar effects appeared only in plasma of AR tumor bearers. The salt solubility, production kinetics and hemolytic activity of these compounds resemble those of the immunoglobulins. This, together with their preferential increase in rats bearing the AR variant, suggest their association with an immune response against this tumor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Food allergy is most frequently the result of IgE-mediated hypersensitivity reactions. Here, we describe a chronic model in which some of the intestinal and systemic consequences of continuous egg white solution ingestion by ovalbumin-sensitized eight-week-old BALB/c mice, 6 animals per group, of both sexes, were investigated. There was a 20% loss of body weight that began one week after antigen exposure and persisted throughout the experiment (3 weeks). The sensitization procedure induced the production of anti-ovalbumin IgG1 and IgE, which were enhanced by oral antigen exposure (129% for IgG1 and 164% for IgE, compared to sensitization values). Intestinal changes were determined by jejunum edema at 6 h (45% Evans blue extravasation) and by a significant eosinophil infiltration with a peak at 48 h. By day 21 of continuous antigen exposure, histological findings were mild, with mast cell hyperplasia (100%) and increased mucus production (483%). Altogether, our data clearly demonstrate that, although immune stimulation was persistently occurring in response to continuous oral antigen exposure, regulatory mechanisms were occurring in the intestinal mucosa, preventing overt pathology. The experimental model described here reproduces the clinical and pathological changes of mild chronic food allergy and may be useful for mechanistic studies of this common clinical condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type 1 diabetes mellitus results from a cell-mediated autoimmune attack against pancreatic ß-cells. Traditional treatments involve numerous daily insulin dosages/injections and rigorous glucose control. Many efforts toward the identification of ß-cell precursors have been made not only with the aim of understanding the physiology of islet regeneration, but also as an alternative way to produce ß-cells to be used in protocols of islet transplantation. In this review, we summarize the most recent studies related to precursor cells implicated in the regeneration process. These include embryonic stem cells, pancreas-derived multipotent precursors, pancreatic ductal cells, hematopoietic stem cells, mesenchymal stem cells, hepatic oval cells, and mature ß-cells. There is controversial evidence of the potential of these cell sources to regenerate ß-cell mass in diabetic patients. However, clinical trials using embryonic stem cells, umbilical cord blood or adult bone marrow stem cells are under way. The results of various immunosuppressive regimens aiming at blocking autoimmunity against pancreatic ß-cells and promoting ß-cell preservation are also analyzed. Most of these regimens provide transient and partial effect on insulin requirements, but new regimens are beginning to be tested. Our own clinical trial combines a high dose immunosuppression with mobilized peripheral blood hematopoietic stem cell transplantation in early-onset type 1 diabetes mellitus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A successful gene therapy clinical trial that also encountered serious adverse effects has sparked extensive study and debate about the future directions for retrovirus-mediated interventions. Treatment of X-linked severe combined immunodeficiency with an oncoretrovirus harboring a normal copy of the gc gene was applied in two clinical trials, essentially curing 13 of 16 infants, restoring a normal immune system without the need for additional immune-related therapies. Approximately 3 years after their gene therapy, tragically, 3 of these children, all from the same trial, developed leukemia as a result of this experimental treatment. The current understanding of the mechanism behind this leukemogenesis involves three critical and cooperating factors, i.e., viral integration, oncogene activation, and the function of the therapeutic gene. In this review, we will explore the causes of this unwanted event and some of the possibilities for reducing the risk of its reoccurrence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of N-acetylcysteine, a thiolic antioxidant, on attenuation of phosphamidon-induced oxidative stress and immune dysfunction was evaluated in adult male Wistar rats weighing 200-250 g. Rats were divided into four groups, 8 animals/group, and treated with phosphamidon, N-acetylcysteine or the combination of both for 28 days. Oral administration of phosphamidon (1.74 mg/kg), an organophosphate insecticide, increased serum malondialdehyde (3.83 ± 0.18 vs 2.91 ± 0.24 nmol/mL; P < 0.05) and decreased erythrocyte superoxide dismutase (567.8 ± 24.36 vs 749.16 ± 102.61 U/gHb; P < 0.05), catalase activity (1.86 ± 0.18 vs 2.43 ± 0.08 U/gHb; P < 0.05) and whole blood glutathione levels (1.25 ± 0.21 vs 2.28 ± 0.08 mg/gHb; P < 0.05) showing phosphamidon-induced oxidative stress. Phosphamidon exposure markedly suppressed humoral immune response as assessed by antibody titer to ovalbumin (4.71 ± 0.51 vs 8.00 ± 0.12 -log2; P < 0.05), and cell-mediated immune response as assessed by leukocyte migration inhibition (25.24 ± 1.04 vs 70.8 ± 1.09%; P < 0.05) and macrophage migration inhibition (20.38 ± 0.99 vs 67.16 ± 5.30%; P < 0.05) response. Phosphamidon exposure decreased IFN-у levels (40.7 ± 3.21 vs 55.84 ± 3.02 pg/mL; P < 0.05) suggesting a profound effect of phosphamidon on cell-mediated immune response. A phosphamidon-induced increase in TNF-α level (64.19 ± 6.0 vs 23.16 ± 4.0 pg/mL; P < 0.05) suggests a contributory role of immunocytes in oxidative stress. Co-administration of N-acetylcysteine (3.5 mmol/kg, orally) with phosphamidon attenuated the adverse effects of phosphamidon. These findings suggest that oral N-acetylcysteine treatment exerts protective effect and attenuates free radical injury and immune dysfunction caused by subchronic phosphamidon exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infection with the protozoan parasite Trypanosoma cruzi leads to Chagas disease, which affects millions of people in Latin America. Infection with T. cruzi cannot be eliminated by the immune system. A better understanding of immune evasion mechanisms is required in order to develop more effective vaccines. During the acute phase, parasites replicate extensively and release immunomodulatory molecules that delay parasite-specific responses mediated by T cells. This immune evasion allows the parasite to spread in the host. In the chronic phase, parasite evasion relies on its replication strategy of hijacking the TGF-β signaling pathway involved in inflammation and tissue regeneration. In this article, the mechanisms of immune evasion described for T. cruzi are reviewed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to determine whether lipoarabinomannan (LAM), in combination with Freund’s incomplete adjuvant (FIA), was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA) in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05). Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fanconi anemia complementation group F protein (FANCF) is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S) was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer.