996 resultados para Image Contrast
Resumo:
This paper presents a semisupervised support vector machine (SVM) that integrates the information of both labeled and unlabeled pixels efficiently. Method's performance is illustrated in the relevant problem of very high resolution image classification of urban areas. The SVM is trained with the linear combination of two kernels: a base kernel working only with labeled examples is deformed by a likelihood kernel encoding similarities between labeled and unlabeled examples. Results obtained on very high resolution (VHR) multispectral and hyperspectral images show the relevance of the method in the context of urban image classification. Also, its simplicity and the few parameters involved make the method versatile and workable by unexperienced users.
Resumo:
Intraoperative cardiac imaging plays a key role during transcatheter aortic valve replacement. In recent years, new techniques and new tools for improved image quality and virtual navigation have been proposed, in order to simplify and standardize stent valve positioning and implantation. But routine performance of the new techniques may require major economic investments or specific knowledge and skills and, for this reason, they may not be accessible to the majority of cardiac centres involved in transcatheter valve replacement projects. Additionally, they still require injections of contrast medium to obtain computed images. Therefore, we have developed and describe here a very simple and intuitive method of positioning balloon-expandable stent valves, which represents the evolution of the 'dumbbell' technique for echocardiography-guided transcatheter valve replacement without angiography. This method, based on the partial inflation of the balloon catheter during positioning, traps the crimped valve in the aortic valve orifice and, consequently, very near to the ideal landing zone. It does not require specific echocardiographic knowledge; it does not require angiographies that increase the risk of postoperative kidney failure in elderly patients, and it can be also performed in centres not equipped with a hybrid operating room.
Resumo:
The monetary policy reaction function of the Bank of England is estimated by the standard GMM approach and the ex-ante forecast method developed by Goodhart (2005), with particular attention to the horizons for inflation and output at which each approach gives the best fit. The horizons for the ex-ante approach are much closer to what is implied by the Bank’s view of the transmission mechanism, while the GMM approach produces an implausibly slow adjustment of the interest rate, and suffers from a weak instruments problem. These findings suggest a strong preference for the ex-ante approach.
Resumo:
The monetary policy reaction function of the Bank of England is estimated by the standard GMM approach and the ex-ante forecast method developed by Goodhart (2005), with particular attention to the horizons for inflation and output at which each approach gives the best fit. The horizons for the ex-ante approach are much closer to what is implied by the Bank’s view of the transmission mechanism, while the GMM approach produces an implausibly slow adjustment of the interest rate, and suffers from a weak instruments problem. These findings suggest a strong preference for the ex-ante approach.
Resumo:
OBJECTIVE: To evaluate morphological and perfusion changes in liver metastases of neuroendocrine tumours by contrast-enhanced ultrasound (CEUS) after transarterial embolisation with bead block (TAE) or trans-arterial chemoembolisation with doxorubicin-eluting beads (DEB-TACE). METHODS: In this retrospective study, seven patients underwent TAE, and ten underwent DEB-TACE using beads of the same size. At 1 day before embolisation, 2 days, 1 month and 3 months after the procedure, a destruction-replenishment study using CEUS was performed with a microbubble-enhancing contrast material on a reference tumour. Relative blood flow (rBF) and relative blood volume (rBV) were obtained from the ratio of values obtained in the tumour and in adjacent liver parenchyma. Morphological parameters such as the tumour's major diameter and the viable tumour's major diameter were also measured. A parameter combining functional and morphological data, the tumour vitality index (TVI), was studied. The Wilcoxon rank-sum test and Fisher's test were used to compare treatment groups. RESULTS: At 3 months rBF, rBV and TVI were significantly lower (P = 0.005, P = 0.04 and P = 0.03) for the group with doxorubicin. No difference in morphological parameters was found throughout the follow-up. CONCLUSIONS: One parameter, TVI, could evaluate the morphological and functional response to treatments.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Purpose: To evaluate the feasibility, determine the optimal b-value, and assess the utility of 3-T diffusion-weighted MR imaging (DWI) of the spine in differentiating benign from pathologic vertebral compression fractures.Methods and Materials: Twenty patients with 38 vertebral compression fractures (24 benign, 14 pathologic) and 20 controls (total: 23 men, 17 women, mean age 56.2years) were included from December 2010 to May 2011 in this IRB-approved prospective study. MR imaging of the spine was performed on a 3-T unit with T1-w, fat-suppressed T2-w, gadolinium-enhanced fat-suppressed T1-w and zoomed-EPI (2D RF excitation pulse combined with reduced field-of-view single-shot echo-planar readout) diffusion-w (b-values: 0, 300, 500 and 700s/mm2) sequences. Two radiologists independently assessed zoomed-EPI image quality in random order using a 4-point scale: 1=excellent to 4=poor. They subsequently measured apparent diffusion coefficients (ADCs) in normal vertebral bodies and compression fractures, in consensus.Results: Lower b-values correlated with better image quality scores, with significant differences between b=300 (mean±SD=2.6±0.8), b=500 (3.0±0.7) and b=700 (3.6±0.6) (all p<0.001). Mean ADCs of normal vertebral bodies (n=162) were 0.23, 0.17 and 0.11×10-3mm2/s with b=300, 500 and 700s/mm2, respectively. In contrast, mean ADCs were 0.89, 0.70 and 0.59×10-3mm2/s for benign vertebral compression fractures and 0.79, 0.66 and 0.51×10-3mm2/s for pathologic fractures with b=300, 500 and 700s/mm2, respectively. No significant difference was found between ADCs of benign and pathologic fractures.Conclusion: 3-T DWI of the spine is feasible and lower b-values (300s/mm2) are recommended. However, our preliminary results show no advantage of DWI in differentiating benign from pathologic vertebral compression fractures.
Resumo:
The investigation of perceptual and cognitive functions with non-invasive brain imaging methods critically depends on the careful selection of stimuli for use in experiments. For example, it must be verified that any observed effects follow from the parameter of interest (e.g. semantic category) rather than other low-level physical features (e.g. luminance, or spectral properties). Otherwise, interpretation of results is confounded. Often, researchers circumvent this issue by including additional control conditions or tasks, both of which are flawed and also prolong experiments. Here, we present some new approaches for controlling classes of stimuli intended for use in cognitive neuroscience, however these methods can be readily extrapolated to other applications and stimulus modalities. Our approach is comprised of two levels. The first level aims at equalizing individual stimuli in terms of their mean luminance. Each data point in the stimulus is adjusted to a standardized value based on a standard value across the stimulus battery. The second level analyzes two populations of stimuli along their spectral properties (i.e. spatial frequency) using a dissimilarity metric that equals the root mean square of the distance between two populations of objects as a function of spatial frequency along x- and y-dimensions of the image. Randomized permutations are used to obtain a minimal value between the populations to minimize, in a completely data-driven manner, the spectral differences between image sets. While another paper in this issue applies these methods in the case of acoustic stimuli (Aeschlimann et al., Brain Topogr 2008), we illustrate this approach here in detail for complex visual stimuli.
Resumo:
Postmortem angiography methods that use water soluble or lipid soluble liquid contrast compounds may potentially modify the composition of fluid-based biological samples and thus influence toxicological findings. In this study, we investigated whether toxicological investigations performed in urine collected prior to and post angiography using Angiofil? mixed with paraffin oil are characterized by different qualitative or quantitative results. In addition, we studied whether diluting samples with 1% and 3% contrast medium solution may modify molecule concentration. A postmortem angiography group consisting of 50 cases and a postmortem group without angiography consisting of 50 cases were formed. In the first group, toxicological investigations were performed in urine samples collected prior to and post angiography as well as in undiluted and diluted samples. In the second group, analyses were performed in undiluted and diluted urine, bile, gastric content, cerebrospinal and pericardial fluids collected during autopsy. The preliminary results indicate that differences may be observed between urine samples collected prior to and post angiography in the number of identified molecules in relation to specific cases. Analyses performed in diluted samples failed to reveal differences that might potentially alter the interpretation of toxicological results in all analyzed specimens for nearly all molecules, except for tetrahydrocannabinol and its metabolites. Though these findings suggest that toxicology might be effectively performed, in very special cases and for a large number of molecules, in biological samples collected after angiography, it remains recommendable to collect biological fluids for toxicology prior to contrast medium injection.
Resumo:
Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin, and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification. Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.
Resumo:
BACKGROUND: To test the hypothesis that intervals with superior beat-to-beat coronary artery repositioning precision exist in the cardiac cycle, to design a coronary MR angiography (MRA) methodology in response, and to ascertain its performance. METHODS: Coronary repositioning precision in consecutive heartbeats was measured on x-ray coronary angiograms of 17 patients and periods with the highest repositioning precision were identified. In response, the temporal order of coronary MRA pulse sequence elements required modification and the T2 -prep now follows (T2 -post) rather than precedes the imaging part of the sequence. The performance of T2 -post was quantitatively compared (signal-to-noise [SNR], contrast-to-noise [CNR], vessel sharpness) to that of T2 -prep in vivo. RESULTS: Coronary repositioning precision is <1 mm at peak systole and in mid diastole. When comparing systolic T2 -post to diastolic T2 -prep, CNR and vessel sharpness remained unchanged (both P = NS) but SNR for muscle and blood increased by 104% and 36% (both P < 0.05), respectively. CONCLUSION: Windows with improved coronary repositioning precision exist in the cardiac cycle: one in peak systole and one in mid diastole. Peak-systolic imaging necessitates a re-design of conventional coronary MRA pulse sequences and leads to image quality very similar to that of conventional mid-diastolic data acquisition but improved SNR. J. Magn. Reson. Imaging 2015;41:1251-1258. © 2014 Wiley Periodicals, Inc.
Resumo:
Images obtained from high-throughput mass spectrometry (MS) contain information that remains hidden when looking at a single spectrum at a time. Image processing of liquid chromatography-MS datasets can be extremely useful for quality control, experimental monitoring and knowledge extraction. The importance of imaging in differential analysis of proteomic experiments has already been established through two-dimensional gels and can now be foreseen with MS images. We present MSight, a new software designed to construct and manipulate MS images, as well as to facilitate their analysis and comparison.