647 resultados para ISOTACTIC-POLYPROPYLENE
Resumo:
Melt mixing of nylon 8 with neodymium oxide particles was carried out with a single-screw extruder. The crystal behaviors of plain nylon 6 and the neodymium oxide filled nylon 6 mixture were studied by means of isothermal crystallization kinetic analysis. Isothermal crystallization thermograms obtained by differential scanning calorimetry (DSC) were analyzed based on the Avrami equation. The neodymium oxide particles acted as a nucleating agent in the mixture. The overall rate of di-isothermal crystallization of the neodymium oxide filled nylon 6 mixture is higher than that of plain nylon 6. The mechanism and modes of plain nylon 6 were the same as those of neodymium oxide filled PA6 mixture.
Resumo:
The morphology and mechanical properties of polypropylene/high-density polyethylene (PP/HDPE) blends in a wide range of compositions modified by a sequential Ziegler-Natta polymerization product (PP-PE) have been investigated. PP-PE contains multiple components such as PP, ethylene-propylene copolymer (EPC), and high molecular weight polyethylene (HMWPE). The effects of PP-PE on the mechanical properties and morphology of the PP/HDPE blends are the aggregative results of all its individual components. Addition of PP-PE to the blends not only improved the tensile strength of the blends, but the elongation at break increased linearly while the moduli were nearly unchanged. Morphological studies show that the adhesion between the two phases in all the blends of different compositions is enhanced and the dispersed domain sizes of the blends are reduced monotonously with the increment of the content of PP-PE. PP-PE has been demonstrated to be a more effective compatibilizer than EPC. Based on these results, it can be concluded that the tensile strength of the blends depends most on the adhesion between the two phases and the elongation at break depends most on the domain size of the dispersed component. (C) 1995 John Wiley & Sons, Inc.
Resumo:
Morphology and mechanical properties of polypropylene (PP)/high density polyethylene (HDPE) blends modified by ethylene-propylene copolymers (EPC) with residual PE crystallinity were investigated. The EPC showed different interfacial behavior in PP/HDPE blends of different compositions. A 25/75 blend of PP/HDPE (weight ratio) showed improved tensile strength and elongation at break at low EPC content (5 wt %). For the PP/HDPE = 50/50 blend, the presence of the EPC component tended to make the PP dispersed phase structure transform into a cocontinuous one, probably caused by improved viscosity matching of the two components. Both tensile strength and elongation at break were improved at EPC content of 5 wt %. For PP/HDPE 75/25 blends, the much smaller dispersed HDPE phase and significantly improved elongation at break resulted from compatibilization by EPC copolymers. (C) 1995 John Wiley & Sons, Inc.
Resumo:
Morphologies of solution-cast films of iPP/aPP blends have been studied by means of electron microscopy and X-ray scattering techniques. Microscopic observation showed that solution-cast film of iPP consists of two kinds of structural regions, cross-hatched and lath-liked structures. The addition of small amount of aPP (less than or equal to 30%) into iPP did not change iPP's characteristic crystallization behavior. It is noticed that when the content of aPP in its blend was over 80%, iPP formed a very loosely woven-like network composed of very long lamellae with wide-angle lamellar branchings. The X-ray data showed that aPP did not cocrystallize with iPP.
Resumo:
Graft copolymers of polyethylene (PE) with polyisoprene (PI) were synthesized through polymerization of ethylene in toluene solution of PI (cis-1,4-: 95%; 3,4-: 5%) using a homogeneous V(acac)3/Et3Al2Cl3 catalyst. Copolymers are formed when the growing po
Resumo:
In this paper, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were used to study the structure and compatibilization of poly(propylene) (PP)/nylon-12 (PA 12) blends. The compatibilizatio
Resumo:
A new graft copolymer (PP-MA)-g-PEO was synthesized by means of the chemical reaction between maleated polypropylene (PP-MA) and mono hydroxyl poly(ethylene oxide) (PEO-OH). The effect of reaction conditions on the degree of grafting of PEO-OH was studied
Resumo:
In order to study the oriented (epitaxial) crystallization of thermoplastic polymers on oriented polymer substrates, generally the transmission electron microscopy (TEM) is used. With this instrument, the crystallized material can easily be resolved and orientation relationships can be monitored by electron diffraction. Disadvantages are the time consuming sample preparations and difficulties in the in-situ observations of the crystallization events, because of the radiation sensitivity of the polymer crystals. It is demonstrated that these disadvantages of the TEM can be eleminated by the use of different methods of light optical contrasts under specific preparation conditions of the samples and that the optical microscopy being a supplementary method to the TEM for investigations of epitaxial crystallization.
Resumo:
The cylindrical 'D'-size batteries were fabricated by polyaniline paste cathode and lithium foil anode sandwiched with microporous polypropylene separator. The electrolyte used was LiClO4 dissolved in a mixed solvent of propylene carbonate and dimethoxyethane. The results of charge/discharge curves, charge/discharge cycles, the short-circuit current, the open-circuit voltage storage and the change of discharge capacity with temperature, discharge current are reported.
Resumo:
The radiation-induced chain-scission and racemization of isotactic poly(methylmethacrylate)(iso-PMMA) in amorphous and semi-crystalline state as well as in solution have been studied with nuclear magnetic resonance and molar mass deter-mination. It is shown that the chain-scission is dominant for iso-PMMA in dilute solution while the racemization reaction is not favorable in this case. On the contrary, the racemization is favorable when iso-PMMA was irradiated in its crystalline state while chain-scission is not. Such experimental results could be well explained by the mobility of molecules and "cage effect". The hypothesis, we proposed previously that the chain-scission, racemization and recombination are in competition and the final result depends on the state of molecular motion at which iso-PMMA was irradiated, has been verified verified once again.
Resumo:
Shrinkage, retractive stress, and infrared dichroism of the drawn low-density polyethylene (LDPE) as-drawn and irradiated by Co-60-ray have been measured under different annealing conditions. The shrinkage and the disorientation of the irradiated sample was undergone more rapidly than that of unirradiated one as the temperature was continuously increased, surpassing a certain value, and a higher degree of shrinkage and disorientation was achieved finally for the irradiated sample when the samples were annealed with free ends. For the samples heated isothermally with fixed ends, the retractive stress went through a maximum and then attenuated to a limited value, and the degree of such a stress attenuation for the unirradiated sample was much more than that for the irradiated sample. These results show that the taut tie molecules (TTMs) in drawn PE can relax by the pulling of chain segments out of crystal blocks that they anchored in at elevated temperatures higher than the a transition and also by the displacing of microfibrils if the samples were annealed with free ends. The cross-links produced by irradiation prohibit the former process. It was further observed that the dependence of the average extinction coefficient of the band at 2016 cm-1 on that of the band at 1894 cm-1 is related to irradiation and annealing conditions, which has also been explained by the relaxation of TTMs and the function of irradiation-induced cross-linking on the relaxation.
Resumo:
Blends of poly[3,3-bis(chloromethyl)oxetane] (Penton) with poly(vinyl acetate) were prepared. Compatibility, morphology, thermal behavior, and mechanical properties of blends with various compositions were studied using differential scanning calorimetry (DSC), dynamic mechanical measurements (DMA), tensile tests, and scanning electron microscopy (SEM). DMA study showed that the blends have two glass transition temperatures (T(g)). The T(g) of the PVAc rich phase shifts significantly to lower temperatures with increasing Penton content, suggesting that a considerable amount of Penton dissolves in the PVAc rich phase, but that the Penton rich phase contains little PVAc. The Penton/PVAc blends are partially compatible. DSC results suggest that PVAc can act as a beta-nucleator for Penton in the blend. Marked negative deviations from simple additivity were observed for the tensile strength at break over the entire composition range. The Young's modulus curve appeared to be S-shaped, implying that the blends are heterogeneous and have a two-phase structure. This was confirmed by SEM observations.
Resumo:
A wound-type cell with a polyaniline (PAn) positive electrode, a LiClO4-propylene carbonate (PC) electrolyte, and a lithium foil negative electrode has been constructed. The two electrodes are separated by a polypropylene separator. The PAn is deposited on carbon felt from a HClO4 solution containing aniline by galvanostatic or potentiostatic electrolysis. Using cyclic voltammetry charge/discharge cycles and charge/retention tests, the following results have been obtained: (i) reversibility of the charge/discharge reaction of the PAn electrode is very good; (ii) more than 50 charge/discharge cycles at 80% charge/discharge efficiency and 260 W h kg-1 discharge energy density can be achieved at 50 mA between 2 and 4 V; (iii) the open-circuit voltage and the capacity retention of the battery after storage at open-circuit for 60 days are 3.4 V and 33%, respectively.
Resumo:
The toughening effect of the separate phases of ethylene/propylene block copolymers and their blends was studied by scanning electron microscopy (SEM). The results obtained show that the interfacial adhesion between separate phases and the isotactic polypropene (iPP) matrix in ethylene/propylene block copolymers is strong at room temperature, but poor at low temperature; specimens exhibit tearing of separate phases during fracture at room temperature, but interfacial fracture between separate phases and the iPP matrix at low temperature. From the characteristics of fractographs of ethylene/propylene block copolymers and their blends, it could be concluded that the separate phases improve the toughness of specimens in several ways: they promote the plastic deformation of the iPP, and they can be deformed and fractured themselves during the fracture process. However, it was shown that the plastic deformation processes, such as multiple-crazing, shear yielding, etc. of the matrix are the dominant mechanisms of energy absorption in highly toughened ethylene/propylene block copolymers and their blends. The deformation and fracture of separate phases are only of secondary importance.