937 resultados para INVERSE-EMULSION POLYMERIZATION
Resumo:
Neutral Ni(II) salicylaldiminato complexes activated with modified methylaluminoxane as catalysts were used for the vinylic polymerization of norbornene. Catalyst activities of up to 7.08 x 10(4) kg(pol)/(mol(Ni) (.) h) and viscosity-average molecular weights of polymer up to 1.5 x 10(6) g/mol were observed at optimum conditions. Polynorbornenes are amorphous, soluble in organic solvents, highly stable, and show glass-transition temperatures around 390 degreesC. Catalyst activity, polymer yield, and polymer molecular weight can be controlled over a wide range by the variation of the reaction parameters such as the Al/Ni ratio, monomer/catalyst ratio, monomer concentration, polymerization reaction temperature, and time.
Resumo:
Reaction of YbI2 with two equivalents of cyclopentylindenyl lithium (C5H9C9H6Li) affords ytterbium(II) substituted indenyl complex (C5H9C9H6)(2)Yb(THF)(2) (1) which shows high activity to ring-opening polymerization (ROP) of lactones. The reaction between YbI2 and cyclopentylcyclopentadienyl sodium (C5H9C5H4Na) gives complex [(C5H9C5H4)(2)Yb(THF)](2)O-2 (2) in the presence of a trace amount of O-2, the molecular structure of which comprises two (C5H9C5H4)(2)Yb(THF) bridged by an asymmetric O-2 unit. The O-2 unit and ytterbium atoms define a plane that contains a C-i symmetry center.
Resumo:
Ethylene polymerization was carried out with zirconocene catalysts supported on montmorillonite (or functionalized montmorillonite). The functionalized montmorillonite was from simple ion exchange of [CH3O2CCH2NH3](+) (MeGlyH(+)) ions with interlamellar cations of layered montmorillonites. The functionalized montmorillonlites [high-purity montmorillonite (MMT)-MeGlyH(+)] had larger interlayer spacing (12.69 Angstrom) than montmorillonites without treatment (9.65 Angstrom). The zirconocene catalyst system [Cp2ZrCl2/methylaluminoxane (MAO)/MMT-MeGlyH(+)] had much higher Zr loading and higher activities than those of' other zirconocene catalyst systems (Cp2ZrCl2/MMT, Cp2ZrCl2/MMT-MeGlyH(+), Cp2ZrCl2/MAO/MMT, [CP2ZrCl](+)[BF4]/MMT, [Cp2ZrCl][BF4](-)/MMT-MeGlyH(+), [CP2ZrCl](+)[BF4](-)/MAO/MMT-MeGlyH(+), and [Cp2ZrCl](+)[BF4](-)/MAO/MMT). The polyethylenes with good bulk density were obtained from the catalyst systems, particularly (CP2ZrCl2/MAO/MMT-MeGlyH(1)). MeGlyH(+) and MAO seemed to play important roles for preparation of the supported zirconocenes and polymerization of ethylene. The difference in Zr loading and catalytic activity among the supported zirconocene catalysts is discussed.
Resumo:
In this paper, (-)menthyl methacrylate((-)MnMA) was polymerized at -78degreesC in toluene with three types of anionic catalysts, which were complexes of fluorenyllithium with (-)sparteine -((-)-Sp), (S, S)-(+)-2, 3-dimethoxy-1, 4-bis(dimethylamino)butane((+)DDB) and N,N,N,N'-tetramethylethylenediamine(TMEDA), and the chiral optical property of the obtained polymer was studied. The circular dichroism (CD) spectrum of the polymer showed negative Cotton effect.
Resumo:
The polymerized metallocene catalyst 4 was prepared by the co-polymerization of ansa-zirconocene complex [
Resumo:
A new family of self-immobilized ethylene polymerization catalysts, derived from neutral, single-component salicylaldiminato phenyl nickel complexes, is described.
Resumo:
The different poly (methyl methacrylate) (PMMA) /SiO2 hybrids were prepared through sol-gel method involving PMMA emulsion (emulsion method) and PMMA/THF solution (solution method). The samples were characterized by differential scanning calorimetry(DSC), thermogravimetry analysis(TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that PMMA/SiO2 composites in nanoscale were prepared by emulsion method, and its size of phase heterogeneity was less than that of solution method. Meanwhile, the polymer emulsion as the reactive medium was more suitable for the formation of SiO2 network.
Resumo:
The effects of thermally crosslinkable polymerization of monomer reactant-polyimide (POI) on the miscibility, morphology, and crystallization of partially miscible poly(ether sulfone) (PES)/poly(phenylene sulfide) (PPS) blends were investigated with differential scanning calorimetry and scanning electron microscopy. The addition of POI led to a significant reduction in the size of PPS particles, and the interfacial tension between PPS and crosslinked POI was smaller than that between PES and crosslinked POI. During melt blending, crosslinking and grafting reactions of POI with PES and PPS homopolymers were detected; however, the reaction activity of POI with PPS was much higher than that with PES. The crosslinking and grafting reactions were developed further when blends were annealed at higher temperatures. Moreover, POI was an effective nucleation agent of the crystallization of PPS, but crosslinking and grafting hindered the crystallization of PPS. The final effect of POI on the crystallinity of the PPS phase was determined by competition between the two contradictory factors. The crosslinking and grafting reactions between the two components was controlled by the dosage of POI in the blends, the premixing sequence of POI with the two components, the annealing time, and the temperature.
Resumo:
The unsymmetrical allyl containing post-metallocene complex [ArN = C( Me)] [(ArN)-N-' = C(Me)]C5H3NFeCl2 [Ar = 2,6(i- Pr)(2)C6H3, Ar' = 4-allyl-2,6-(i-Pr)(2)C6H3] (3) has been prepared and characterized. Complex (3) can be co-polymerized with styrene in the presence of radical initiator to produce polymerized post-metallocene catalyst which exhibits high activity for ethylene polymerization (2.5 x 10(6) g PE/mol Fe.h).
Resumo:
In this article, we report on an approach of using an emulsion polymerized polymer in preparing organic-inorganic nanocomposites through a sol-gel technique. By mixing a polymer emulsion with prehydrolyzed tetraethoxysilane transparent poly(butyl methacrylate)/SiO2, nanocomposites were prepared as shown by TEM. AFM, FTIR, and XPS results show that there is a strong interaction between polymer latex particles and the SiO2 network. Comparison of the emulsion method with a traditional solution method shows that nanocomposites can be prepared by both methods, but there is some difference in their morphology and properties.
Resumo:
Phenolphthalein based polyarylate macrocyclic oligomers were selectively synthesized by an interfacial polycondensation reaction of o-phthaloyl dichloride with phenolphthalein. The high selectivity benefits from the role of phenolphthalein as a color indicator, an efficient phase transfer catalyst, acid a preferred conformation of the starting materials as indicated by analyzing a single-crystal X-ray structure of an analogous macrocycle. The melt ROP of phenolphthalein polyarylate cyclic dimer was studied using nucleophilic initiators, The molecular weight of the resulting polymers builds up very rapidly at the very early stage of polymerization but decreases with time. During the ROP of cyclic dimer, analogous macrocycles with higher degree of polymerization (n greater than or equal to 3) and linear oligomers were produced by backbiting reaction especially at later stage of polymerization. Conversion of cyclic dimer is very fast at the earlier stage of polymerization and then increases slowly with time as analyzed by gel permeation chromatography. However, the total amount of cyclic oligomers in the ROP system increases with time at the later stage of polymerization because of the formation of larger macrocycles. The resulting polymers are amorphous. Glass transition temperatures (T(g)s) of these polymers are influenced by the polymerization time, type of initiator, and initiator concentration.
Resumo:
The synthesis and characterization of metallocene complexes which can be used as catalysts in the presence of MAO for olefin polymerization were discussed in the present paper. The metallocene complexes have been characterized by IR, H-1 NMR, EI-MS spectra and element analyses; The catalytic features of Olefin polymerization were studied under different conditions. Metallocenes in which metals is Ti had no activity for ethylene polymerization, Polymers with different features can be obtained by using different catalysts.
Resumo:
Cyclic oligomers containing hexafluoroiso-propylidene(HFIP) units were prepared in excellent yields by a nucleophilic aromatic substitution reaction of 4,4(7)- (hexafluoroisopropylidene) diphenol with difluoro-monomers in the presence of anhydrous potassium carbonate under pseudo high dilution conditions. A combination of GPC, MALDI-TOF MS and NMR analysis confirmed the structure of the cyclic oligomers. All macrocyclic oligomers are crystalline and undergo facile melt polymerization to give high molecular weight fluorinated polyethers.
Resumo:
A novel polyimide precursor based on the dimethyl ester of 3,3',4,4'-biphenyltetracarboxylic acid, 4,4'-methylene dianiline and the monomethyl ester of 5-norbornene-2,3-dicarboxylic acid (BPDE/MDA/NE) was prepared by a modified polymerization of monomeric reactants (PMR) approach (MPMR). The composition of the precursor was quantitatively characterized by means of FTIR, HPLC and GC. The fractions of imide, amic ester and amic acid units in the precursor, typically prepared by refluxing in 1,4-dioxane for 2 h, were 33.7, 30.8 and 1.1 mol-%, respectively. The portion of free MDA was 3.34 wt.-% as determined by HPLC.
Resumo:
Two kinds of novel macrocyclic aryl thioether ether oligomers were synthesized by nucleophilic condensation reaction in high yields under pseudo-high-dilution condition. A combination of H-1 NMR, GPC and MALDI-TOF MS analyses unambiguously confirmed the cyclic nature and their distributions, Macrocyclic thioether ether ketone oligomers can undergo facile melt ring opening polymerization(ROP) initiated by thiyl radical to give a high molecular weight polymer.