532 resultados para INSECTICIDE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We evaluated oil and powder formulations of Melia azedarach for controlling larvae of Diabrotica speciosa (Germar) in corn and plant enhancement. Five concentrations of each formulation were evaluated and compared to fipronil (negative control) and distilled water (positive control). After treatment, the number of surviving insects (larvae, pupae, and adults), the adult body weight, the sex ratio, and the longevity were recorded, while the height, dry weight of aerial part and roots, and number of leaves of plants were measured. The oil formulation at 4.0 mL reduced the larvae population of D. speciosa similarly to the insecticide fipronil, which resulted in greater height, dry weight of the root system, and number of leaves. Powder formulation at concentrations of 40, 80, and 160 mg caused larval mortality above 80%; however, these concentrations did not prevent reduction of plant height and dry weight of aerial part. Further studies assessing the residual period of M. azedarach control against D. speciosa larvae and its phytotoxicity, which are common traits associated with azadirachtin application, are necessary to subsidize the next steps of this alternative control strategy.
Resumo:
The objective of this study objective was to evaluate the selectivity of pre-emergence applications the herbicide clomazone cotton seeds treated with dietholate and zinc acetate. The 4 x 2 factorial arrangement was adopted (4 seed treatment methods and 2 clomazone dosages), distributed in a randomized block design with 4 repetitions. In treatments where dietholate and zinc acetate were applied, rates of 0.4 kg ha(-1) and 8 ml per kg of seeds were used respectively. The clomazone rates used refer to 0.8 and 1.0 kg ha(-1). The cotton cultivar used was the Fiber Max 966 LL. Independent of treatment, all seeds were treated with tiametoxam insecticide and fludioxonil + metalaxyl-M fungicide at rates of 2.24 and 0.08 + 0.03 g per kg of seed, respectively, to control pests early and limit losses caused by pathogens in germination and seedling emergence. Dietholate and zinc acetate treatment had greater initial effect on cotton plants at 21, 30 and 45 days after application. In phytointoxication symptoms were observed for treatment with dietholate and zinc acetate during the evaluation periods. Seeds treated with dietholate, dietholate and zinc acetate or zinc acetate alone provided a higher number of bolls and seed cotton production compared to the control.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The insecticide imidacloprid and the herbicide sulfentrazone are two different classes of pesticides that are used for pest control in sugarcane agriculture. To evaluate the genotoxic potential of low concentrations of these two pesticides alone and in mixture, the comet assay and the micronucleus (MN) test employing fluorescence in situ hybridization (FISH) with a centromeric probe were applied in human hepatoma cell lines (HepG2), in a 24-h assay. Mutagenicity was assessed by Salmonella/microsome assay with TA98 and TA100 strains in the absence and presence of an exogenous metabolizing system (S9). The results showed significant inductions of MN in HepG2 cells by both pesticides, for all the tested concentrations. As evidenced in the comet assay, only the imidacloprid presented significant responses. When the two pesticides were associated, a significant induction of damage was observed in the HepG2 cells by the comet assay, but not by the MN test. Moreover, the MN induced by the mixtures of the pesticides appeared at lower levels than those induced by sulfentrazone and imidacloprid when tested alone. According to the FISH results, the damage induced by imidacloprid in the HepG2 cells resulted from a clastogenic action of this insecticide (76.6% of the MN did not present a centromeric signal). For the herbicide sulfentrazone and for the mixture of the pesticides, a similar frequency of MN with and without the presence of the centromeric signal (herbicide: 52.45% of the MN without centromeric signal and 47.54% of the MN with centromeric signal; mixture: 48.71% of the MN without centromeric signal and 51.42% of the MN with centromeric signal) was verified. Based on these results, it was concluded that each one of the pesticides evaluated interacts with the DNA of HepG2 cells and causes irreparable alterations in the cells. However, the combination of the pesticides showed an antagonistic effect on the cells and the damage induced was milder and not persistent in HepG2 cells. The results obtained by the Ames test did not point out significant results.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fipronil is an insecticide extensively used to control pests in crops and animals. There are relates of poisoning due to exposure of fipronil in mammals and the liver has been suggested as potential target. In this study, we evaluated the effects of fipronil and its metabolites sulfone and desulfinyl on the bioenergetics, reactive oxygen species (ROS) production and calcium efflux from mitochondria isolated from rat liver. Fipronil (5-25 μM) inhibited state-3 respiration in mitochondria energized with glutamate plus malate, substrates of complex I of the respiratory chain and decreased the mitochondrial membrane potential resulting in inhibition of ATP synthesis. Fipronil also caused uncoupling in succinate-energized mitochondria and calcium efflux. The metabolites sulfone and desulfinyl also acted as mitochondrial inhibitors and uncouplers and caused calcium efflux, but with different potencies, being the sulfone the more potent one. These effects of fipronil and its metabolites on mitochondrial bioenergetics and calcium homeostasis may be related to toxic effects of the insecticide in the liver.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)