959 resultados para IMPACT FRACTURE PARAMETERS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tensile strengths, impact energies, and fracture toughness data are presented for pure Fe-0.5 C, Astaloy A with 0.2 and 0.6%C, and for Distaloy AB-0.6%C at relative densities of about 0.9, achieved by conventional pressing and sintering, and at close to 1.0, achieved by powder forging. At low relative density, properties are controlled by sizes of sinter necks; it is postulated that toughness scales as (x/a)4, x/a being the ratio of neck diameter to particle diameter. At high relative density, microvoid coalescence and good toughness is observed for low strength microstructures whereas cleavage and poor toughness is a concomitant of high strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. To establish the optimal flash settings for retinal vessel oxygen saturation parameters using dual-wavelength imaging in a multiethnic group. METHODS. Twelve healthy young subjects (mean age 32 years [SD 7]; three Mediterranean, two South Asian, and seven Caucasian individuals) underwent retinal vessel oxygen saturation measurements using dual-wavelength oximetry, noncontact tonometry, and manual sphygmomanometry. In order to evaluate the impact of flash intensity, we obtained three images (fundus camera angle 30°, ONH centered) per flash setting. Flash settings of the fundus camera were increased in steps of 2 (initial setting of 6 and the final of 22), which reflect logarithmic increasing intensities from 13.5 to 214 Watt seconds (Ws). RESULTS. Flash settings below 27 Ws were too low to obtain saturation measurements, whereas flash settings of more than 214 Ws resulted in overexposed images. Retinal arteriolar and venular oxygen saturation was comparable at flash settings of 27 to 76 Ws (arterioles' range: 85%-92%; venules' range: 45%-53%). Higher flash settings lead to increased saturation measurements in both retinal arterioles (up to 110%) and venules (up to 92%), with a more pronounced increase in venules. CONCLUSIONS. Flash intensity has a significant impact on retinal vessel oxygen saturation measurements using dual-wavelength retinal oximetry. High flash intensities lead to supranormal oxygen saturation measurements with a magnified effect in retinal venules compared with arteries. In addition to even retinal illumination, the correct flash setting is of paramount importance for clinical acquisition of images in retinal oximetry. We recommend flash settings between 27 to 76 Ws. © 2013 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we study for the first time the influence of microwave power higher than 2.0 kW on bonded hydrogen impurity incorporation (form and content) in nanocrystalline diamond (NCD) films grown in a 5 kW MPCVD reactor. The NCD samples of different thickness ranging from 25 to 205 μm were obtained through a small amount of simultaneous nitrogen and oxygen addition into conventional about 4% methane in hydrogen reactants by keeping the other operating parameters in the same range as that typically used for the growth of large-grained polycrystalline diamond films. Specific hydrogen point defect in the NCD films is analyzed by using Fourier-transform infrared (FTIR) spectroscopy. When the other operating parameters are kept constant (mainly the input gases), with increasing of microwave power from 2.0 to 3.2 kW (the pressure was increased slightly in order to stabilize the plasma ball of the same size), which simultaneously resulting in the rise of substrate temperature more than 100 °C, the growth rate of the NCD films increases one order of magnitude from 0.3 to 3.0 μm/h, while the content of hydrogen impurity trapped in the NCD films during the growth process decreases with power. It has also been found that a new H related infrared absorption peak appears at 2834 cm-1 in the NCD films grown with a small amount of nitrogen and oxygen addition at power higher than 2.0 kW and increases with power higher than 3.0 kW. According to these new experimental results, the role of high microwave power on diamond growth and hydrogen impurity incorporation is discussed based on the standard growth mechanism of CVD diamonds using CH4/H2 gas mixtures. Our current experimental findings shed light into the incorporation mechanism of hydrogen impurity in NCD films grown with a small amount of nitrogen and oxygen addition into methane/hydrogen plasma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated flow and transport model using MIKE SHE/MIKE 11 software was developed to predict the flow and transport of mercury, Hg(II), under varying environmental conditions. The model analyzed the impact of remediation scenarios within the East Fork Poplar Creek watershed of the Oak Ridge Reservation with respect to downstream concentration of mercury. The numerical simulations included the entire hydrological cycle: flow in rivers, overland flow, groundwater flow in the saturated and unsaturated zones, and evapotranspiration and precipitation time series. Stochastic parameters and hydrologic conditions over a five year period of historical hydrological data were used to analyze the hydrological cycle and to determine the prevailing mercury transport mechanism within the watershed. Simulations of remediation scenarios revealed that reduction of the highly contaminated point sources, rather than general remediation of the contaminant plume, has a more direct impact on downstream mercury concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although drug trafficking organizations (DTOs) exist and have an effect on health, crime, economies, and politics, little research has explored these entities as political organizations. Legal interest groups and movements have been found to influence domestic and international politics because they operate within legal parameters. Illicit groups, such as DTOs, have rarely been accounted for—especially in the literature on interest groups—though they play a measurable role in affecting domestic and international politics in similar ways. Using an interest group model, this dissertation analyzed DTOs as illicit interest groups (IIGs) to explain their political influence. The analysis included a study of group formation, development, and demise that examined IIG motivation, organization, and policy impact. The data for the study drew from primary and secondary sources, which include interviews with former DTO members and government officials, government documents, journalistic accounts, memoirs, and academic research. To illustrate the interest group model, the study examined Medellin-based DTO leaders, popularly known as the "Medellin Cartel." In particular, the study focused on the external factors that gave rise to DTOs in Colombia and how Medellin DTOs reacted to the implementation of counternarcotics efforts. The discussion was framed by the implementation of the 1979 Extradition Treaty negotiated between Colombia and the United States. The treaty was significant because as drug trafficking became the principal bilateral issue in the 1980s; extradition became a major method of combating the illicit drug business. The study's findings suggested that Medellin DTO leaders had a one-issue agenda and used a variety of political strategies to influence public opinion and all three branches of government—the judicial, the legislative, and the executive—in an effort to invalidate the 1979 Extradition Treaty. The changes in the life cycle of the 1979 Extradition Treaty correlated with changes in the political power of Medellin-based DTOs vis-à-vis the Colombian government, and international forces such as the U.S. government's push for tougher counternarcotics efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-span bridges are flexible and therefore are sensitive to wind induced effects. One way to improve the stability of long span bridges against flutter is to use cross-sections that involve twin side-by-side decks. However, this can amplify responses due to vortex induced oscillations. Wind tunnel testing is a well-established practice to evaluate the stability of bridges against wind loads. In order to study the response of the prototype in laboratory, dynamic similarity requirements should be satisfied. One of the parameters that is normally violated in wind tunnel testing is Reynolds number. In this dissertation, the effects of Reynolds number on the aerodynamics of a double deck bridge were evaluated by measuring fluctuating forces on a motionless sectional model of a bridge at different wind speeds representing different Reynolds regimes. Also, the efficacy of vortex mitigation devices was evaluated at different Reynolds number regimes. One other parameter that is frequently ignored in wind tunnel studies is the correct simulation of turbulence characteristics. Due to the difficulties in simulating flow with large turbulence length scale on a sectional model, wind tunnel tests are often performed in smooth flow as a conservative approach. The validity of simplifying assumptions in calculation of buffeting loads, as the direct impact of turbulence, needs to be verified for twin deck bridges. The effects of turbulence characteristics were investigated by testing sectional models of a twin deck bridge under two different turbulent flow conditions. Not only the flow properties play an important role on the aerodynamic response of the bridge, but also the geometry of the cross section shape is expected to have significant effects. In this dissertation, the effects of deck details, such as width of the gap between the twin decks, and traffic barriers on the aerodynamic characteristics of a twin deck bridge were investigated, particularly on the vortex shedding forces with the aim of clarifying how these shape details can alter the wind induced responses. Finally, a summary of the issues that are involved in designing a dynamic test rig for high Reynolds number tests is given, using the studied cross section as an example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated flow and transport model using MIKE SHE/MIKE 11 software was developed to predict the flow and transport of mercury, Hg(II), under varying environmental conditions. The model analyzed the impact of remediation scenarios within the East Fork Poplar Creek watershed of the Oak Ridge Reservation with respect to downstream concentration of mercury. The numerical simulations included the entire hydrological cycle: flow in rivers, overland flow, groundwater flow in the saturated and unsaturated zones, and evapotranspiration and precipitation time series. Stochastic parameters and hydrologic conditions over a five year period of historical hydrological data were used to analyze the hydrological cycle and to determine the prevailing mercury transport mechanism within the watershed. Simulations of remediation scenarios revealed that reduction of the highly contaminated point sources, rather than general remediation of the contaminant plume, has a more direct impact on downstream mercury concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this study was to determine the instantaneous vs. integrated effects of waste on the water quality of the Chorobamba River. I sampled 9 stations upstream and downstream of the Town of Oxapampa, Peru during the dry season (June-August) of 2004. I measured in-situ parameters such as pH, DO, temperature, etc. as well as vegetation, riverbank erosion, nutrients (N03, NH4, P04), coliform bacteria and macroinvertebrate communities to determine the current conditions of the river, as well as the integrated effects of pollution. Although water quality conditions remained stable, high fecal coliform concentrations and macroinvertebrate communities indicate deterioration in river health over a longer period of time. If riparian areas along the Chorobamba continue to decrease and if inputs of sewage into the rivers continue to increase, as a function of population, then, conditions will continue to deteriorate in the coming years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ceramics industry generates waste at various stages of that process, defective products, waste from burning solid fuels, among others. This waste is dumped in landfills, garbage dumps or directly on roads, which has a negative environmental impact. This paper presents a study to incorporate the waste of algaroba wood and chamote (scrap pieces of ceramic already sintered), in to the ceramic material for making sealing blocks. The methodological procedures consist in the characterization of chemical and mineralogical residues, raw materials, and physical-mechanical of the formulations of mixes with clay, silt and waste. By pressing test pieces were produced using a pressure of 200 kgf/cm², varying compositions in the range of 0%, 5%, 10% and 15% by weight of residue. The sintering was performed in a muffle furnace, with the temperature levels of 850 ° C, 900 ° C, 950 ° C, 1000 ° C and 1050 ° C. The evaluated physical and mechanical properties were: Water Absorption, Linear Shrinkage Burning, Apparent Porosity, Apparent Density and Mechanical Resistance to Flexion. Analysis was carried out by Scanning Electron Microscopy on fracture surfaces of the specimens. Evaluation of linear shrinkage property drying and firing , water absorption and mechanical resistance to compression of the sealing blocks 5% wood ash residue, sintered at 900 °C hold temperature in the laboratory the products manufactured on an industrial scale. The main results, it was found on the viability of using the residues of algaroba wood and to confer refractory properties of the ceramic product. The main results, it was concluded feasibility of using the ash residues algaroba wood to impart refractory properties to the ceramic product and the residue of chamote, being derived from the own ceramic product not interfere with the properties, when used in a percentage of up to 5%.Since the residue of chamote being derived from the ceramic product itself had no effect on the properties. Studies in the laboratory have shown that the incorporation of up to 5% of these residues may be adopted as an alternative technology to reduce the environmental impact caused by the industrial sector, without compromising the final properties of the material, since the results on an industrial scale showed absorption values 11.66 and 11.74 of water and waste products respectively, within the parameters of NBR - 15,270, since the mechanical strength was 1.25 MPa and 0.94 MPa respectively for products with and without residue, lower than the minimum required by the technical standard that is 1.5 MPa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ceramics industry generates waste at various stages of that process, defective products, waste from burning solid fuels, among others. This waste is dumped in landfills, garbage dumps or directly on roads, which has a negative environmental impact. This paper presents a study to incorporate the waste of algaroba wood and chamote (scrap pieces of ceramic already sintered), in to the ceramic material for making sealing blocks. The methodological procedures consist in the characterization of chemical and mineralogical residues, raw materials, and physical-mechanical of the formulations of mixes with clay, silt and waste. By pressing test pieces were produced using a pressure of 200 kgf/cm², varying compositions in the range of 0%, 5%, 10% and 15% by weight of residue. The sintering was performed in a muffle furnace, with the temperature levels of 850 ° C, 900 ° C, 950 ° C, 1000 ° C and 1050 ° C. The evaluated physical and mechanical properties were: Water Absorption, Linear Shrinkage Burning, Apparent Porosity, Apparent Density and Mechanical Resistance to Flexion. Analysis was carried out by Scanning Electron Microscopy on fracture surfaces of the specimens. Evaluation of linear shrinkage property drying and firing , water absorption and mechanical resistance to compression of the sealing blocks 5% wood ash residue, sintered at 900 °C hold temperature in the laboratory the products manufactured on an industrial scale. The main results, it was found on the viability of using the residues of algaroba wood and to confer refractory properties of the ceramic product. The main results, it was concluded feasibility of using the ash residues algaroba wood to impart refractory properties to the ceramic product and the residue of chamote, being derived from the own ceramic product not interfere with the properties, when used in a percentage of up to 5%.Since the residue of chamote being derived from the ceramic product itself had no effect on the properties. Studies in the laboratory have shown that the incorporation of up to 5% of these residues may be adopted as an alternative technology to reduce the environmental impact caused by the industrial sector, without compromising the final properties of the material, since the results on an industrial scale showed absorption values 11.66 and 11.74 of water and waste products respectively, within the parameters of NBR - 15,270, since the mechanical strength was 1.25 MPa and 0.94 MPa respectively for products with and without residue, lower than the minimum required by the technical standard that is 1.5 MPa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of this work is to develop and employ numerical methods that provide characterization of granular microstructures, dynamic fragmentation of brittle materials, and dynamic fracture of three-dimensional bodies.

We first propose the fabric tensor formalism to describe the structure and evolution of lithium-ion electrode microstructure during the calendaring process. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Applying this technique to X-ray computed tomography of cathode microstructure, we show that fabric tensors capture the evolution of the inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode.

We then shift focus to the development and analysis of fracture models within finite element simulations. A difficult problem to characterize in the realm of fracture modeling is that of fragmentation, wherein brittle materials subjected to a uniform tensile loading break apart into a large number of smaller pieces. We explore the effect of numerical precision in the results of dynamic fragmentation simulations using the cohesive element approach on a one-dimensional domain. By introducing random and non-random field variations, we discern that round-off error plays a significant role in establishing a mesh-convergent solution for uniform fragmentation problems. Further, by using differing magnitudes of randomized material properties and mesh discretizations, we find that employing randomness can improve convergence behavior and provide a computational savings.

The Thick Level-Set model is implemented to describe brittle media undergoing dynamic fragmentation as an alternative to the cohesive element approach. This non-local damage model features a level-set function that defines the extent and severity of degradation and uses a length scale to limit the damage gradient. In terms of energy dissipated by fracture and mean fragment size, we find that the proposed model reproduces the rate-dependent observations of analytical approaches, cohesive element simulations, and experimental studies.

Lastly, the Thick Level-Set model is implemented in three dimensions to describe the dynamic failure of brittle media, such as the active material particles in the battery cathode during manufacturing. The proposed model matches expected behavior from physical experiments, analytical approaches, and numerical models, and mesh convergence is established. We find that the use of an asymmetrical damage model to represent tensile damage is important to producing the expected results for brittle fracture problems.

The impact of this work is that designers of lithium-ion battery components can employ the numerical methods presented herein to analyze the evolving electrode microstructure during manufacturing, operational, and extraordinary loadings. This allows for enhanced designs and manufacturing methods that advance the state of battery technology. Further, these numerical tools have applicability in a broad range of fields, from geotechnical analysis to ice-sheet modeling to armor design to hydraulic fracturing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amount and quality of available biomass is a key factor for the sustainable livestock industry and agricultural management related decision making. Globally 31.5% of land cover is grassland while 80% of Ireland’s agricultural land is grassland. In Ireland, grasslands are intensively managed and provide the cheapest feed source for animals. This dissertation presents a detailed state of the art review of satellite remote sensing of grasslands, and the potential application of optical (Moderate–resolution Imaging Spectroradiometer (MODIS)) and radar (TerraSAR-X) time series imagery to estimate the grassland biomass at two study sites (Moorepark and Grange) in the Republic of Ireland using both statistical and state of the art machine learning algorithms. High quality weather data available from the on-site weather station was also used to calculate the Growing Degree Days (GDD) for Grange to determine the impact of ancillary data on biomass estimation. In situ and satellite data covering 12 years for the Moorepark and 6 years for the Grange study sites were used to predict grassland biomass using multiple linear regression, Neuro Fuzzy Inference Systems (ANFIS) models. The results demonstrate that a dense (8-day composite) MODIS image time series, along with high quality in situ data, can be used to retrieve grassland biomass with high performance (R2 = 0:86; p < 0:05, RMSE = 11.07 for Moorepark). The model for Grange was modified to evaluate the synergistic use of vegetation indices derived from remote sensing time series and accumulated GDD information. As GDD is strongly linked to the plant development, or phonological stage, an improvement in biomass estimation would be expected. It was observed that using the ANFIS model the biomass estimation accuracy increased from R2 = 0:76 (p < 0:05) to R2 = 0:81 (p < 0:05) and the root mean square error was reduced by 2.72%. The work on the application of optical remote sensing was further developed using a TerraSAR-X Staring Spotlight mode time series over the Moorepark study site to explore the extent to which very high resolution Synthetic Aperture Radar (SAR) data of interferometrically coherent paddocks can be exploited to retrieve grassland biophysical parameters. After filtering out the non-coherent plots it is demonstrated that interferometric coherence can be used to retrieve grassland biophysical parameters (i. e., height, biomass), and that it is possible to detect changes due to the grass growth, and grazing and mowing events, when the temporal baseline is short (11 days). However, it not possible to automatically uniquely identify the cause of these changes based only on the SAR backscatter and coherence, due to the ambiguity caused by tall grass laid down due to the wind. Overall, the work presented in this dissertation has demonstrated the potential of dense remote sensing and weather data time series to predict grassland biomass using machine-learning algorithms, where high quality ground data were used for training. At present a major limitation for national scale biomass retrieval is the lack of spatial and temporal ground samples, which can be partially resolved by minor modifications in the existing PastureBaseIreland database by adding the location and extent ofeach grassland paddock in the database. As far as remote sensing data requirements are concerned, MODIS is useful for large scale evaluation but due to its coarse resolution it is not possible to detect the variations within the fields and between the fields at the farm scale. However, this issue will be resolved in terms of spatial resolution by the Sentinel-2 mission, and when both satellites (Sentinel-2A and Sentinel-2B) are operational the revisit time will reduce to 5 days, which together with Landsat-8, should enable sufficient cloud-free data for operational biomass estimation at a national scale. The Synthetic Aperture Radar Interferometry (InSAR) approach is feasible if there are enough coherent interferometric pairs available, however this is difficult to achieve due to the temporal decorrelation of the signal. For repeat-pass InSAR over a vegetated area even an 11 days temporal baseline is too large. In order to achieve better coherence a very high resolution is required at the cost of spatial coverage, which limits its scope for use in an operational context at a national scale. Future InSAR missions with pair acquisition in Tandem mode will minimize the temporal decorrelation over vegetation areas for more focused studies. The proposed approach complements the current paradigm of Big Data in Earth Observation, and illustrates the feasibility of integrating data from multiple sources. In future, this framework can be used to build an operational decision support system for retrieval of grassland biophysical parameters based on data from long term planned optical missions (e. g., Landsat, Sentinel) that will ensure the continuity of data acquisition. Similarly, Spanish X-band PAZ and TerraSAR-X2 missions will ensure the continuity of TerraSAR-X and COSMO-SkyMed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arctic sea-ice decline is expected to have a significant impact on Arctic marine ecosystems. Ice-associated fauna play a key role in this context because they constitute a unique part of Arctic biodiversity and transmit carbon from sea-ice algae into pelagic and benthic food webs. Our study presents the first regional-scale record of under-ice faunal distribution and the environmental characteristics of under-ice habitats throughout the Eurasian Basin. Sampling was conducted with a Surface and Under-Ice Trawl, equipped with a sensor array recording ice thickness and other physical parameters during trawling. We identified 2 environmental regimes, broadly coherent with the Nansen and Amundsen Basins. The Nansen Basin regime was distinguished from the Amundsen Basin regime by heavier sea-ice conditions, higher surface salinities and higher nitrate + nitrite concentrations. We found a diverse (28 species) under-ice community throughout the Eurasian Basin. Change in community structure reflected differences in the relative contribution of abundant species. Copepods (Calanus hyperboreus and C. glacialis) dominated in the Nansen Basin regime. In the Amundsen Basin regime, amphipods (Apherusa glacialis, Themisto libellula) dominated. Polar cod Boreogadus saida was present throughout the sampling area. Abrupt changes from a dominance of ice-associated amphipods at ice-covered stations to a dominance of pelagic amphipods (T. libellula) at nearby ice-free stations emphasised the decisive influence of sea ice on small-scale patterns in the surface-layer community. The observed response in community composition to different environmental regimes indicates potential long-term alterations in Arctic marine ecosystems as the Arctic Ocean continues to change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. Advanced cancer patients with disease progression develop cachexia. Nevertheless, cancer patients at nutritional risk have shown improved body weight and quality of life with oral nutritional supplements. Method. This was a randomized controlled trial in adult female cancer patients (n = 63) attending palliative clinics, with symptoms of cachexia. Eligible patients were randomly distributed into control (n = 33) and intervention (n = 30) groups. Both groups were provided with nutritional and physical activity counseling, but the intervention group received an additional 100 g of Improved Atta (IAtta) for 6 months daily consumption. This study was designed to assess the efficacy of IAtta (with counseling) in enhancing the health status of cachexic patients. Anthropometric measurements, dietary intake, physical activity level and quality of life parameters were assessed at baseline, after 3 months, and at the end of 6 months. Results. Patients in the control group (n = 15) had significantly decreased body weight (P = .003), mid–upper-arm circumference (P = .002), and body fat (P = .002) by the end of intervention. A trend of body weight gain in the intervention group (n = 17; P = .08) and significant increase of body fat (P = .002) was observed; moreover, patients reported a significant improvement in fatigue (P = .002) and appetite scores (P = .006) under quality-of-life domains at the end of intervention. Conclusions. Embedding a nutrition-sensitive intervention ( IAtta ) within Indian palliative care therapy may improve quality of life and stabilize body weight in cancer cachexia patients.