813 resultados para IMAGERY
Resumo:
To interogate spatial data sets including satellite imagery, EM surveys and ground samples to identify the efficiencies of current management practices within Australian cane regions.
Resumo:
Sichuanissa Tiibetin ylängön metsäkato on pysähtynyt mutta eroosio-ongelmat jatkuvat Viikin tropiikki-instituutin tutkija Ping ZHOU kartoitti trooppisen metsänhoidon alaan kuuluvassa väitöskirjatyössään maaperän eroosioalttiutta ja sen riippuvuutta metsäkasvillisuudesta Jangtsen tärkeää sivuhaaraa Min-jokea ympäröivällä n. 7400 neliökilometrin suuruisella valuma-alueella Sichuanin Aba-piirikunnassa. Aineistonaan hän käytti muun muassa satelliittikartoitustietoja ja mittaustuloksia yli 600 maastokoealalta. Tutkimuksen nimi suomeksi on "Maaperän eroosion mallinnus ja vuoristoisen valuma-alueen ekologinen ennallistaminen Sichuanissa Kiinassa". Aikaisempien tutkimusten perusteella oli tiedossa että metsien häviäminen tällä alueella pysähtyi jo 1980-luvun alussa. Sen jälkeen on metsien pinta-ala hitaasti kasvanut etupäässä sen vuoksi, että teollinen puunhakkuu luonnonmetsissä kiellettiin kokonaan v. 1998 ja 25 astetta jyrkemmillä rinteillä myös maatalouden harjoittaminen on saatu lopetetuksi viljelijöille tarjottujen taloudellisten houkuttimien avulla. Täten myös pelto- ja laidunmaata on voitu ennallistaa metsäksi. Ping Zhou pystyi jakamaan 5700 metrin korkeuteen saakka kohoavan vuoristoalueen eroosioalttiudeltaan erilaisiin vyöhykkeisiin rinteen kaltevuuden, sademäärän, kasvipeitteen ja maalajin perusteella. Noin 15 prosentilla tutkitun valuma-alueen pinta-alasta, lähinnä Min-joen pääuomaa ympäröivillä jyrkillä rinteillä, eroosioriski oli suuri tai erittäin suuri. Eri tyyppisellä kasvillisuudella oli hyvin erilainen vaikutus eroosioalttiuteen, ja myös alueen sijainti vuoriston eri korkeuksilla vaikutti eroosioon. Säästyneet lähes luonnontilaiset havumetsät, joita on etupäässä vuoriston ylimmissä osissa 2600-4000 metrin korkeudella, edistävät tehokkaasti metsän luontaista uudistumista ja levittäytymistä vaurioituneille alueille. Säilyneiden metsien puulajikoostumus antoi tutkimuksessa mahdollisuuden ennustaa metsien tulevaa kehitystä koko tutkitulla valuma-alueella sen eri korkeusvyöhykkeissä ja eri maaperätyypeillä. Ennallistamisen kannalta ongelmallisimpia olivat alueet joilta metsäpeite oli lähinnä puiden teollisen hakkuun vuoksi kokonaan hävinnyt ja joilla maaperä yleisesti oli eroosion pahoin kuluttama. Näillä alueilla ei ole tehty juuri mitään uudistamis- tai ennallistamistoimenpiteitä. Niillä metsien ennallistaminen vaatii myös puiden tai pensaiden istuttamista. Tähän sopivia ovat erityisesti ilmakehän typpeä sitovat lajit, joista alueella kasvaa luontaisena mm. sama tyrnilaji joka esiintyy myös Suomessa. Työssä tutkittiin yli kahdeksankymmenen paikallisen luontaisen puulajin (joista peräti noin kolmannes on havupuulajeja) ekologisia ominaisuuksia ja soveltuvuutta metsien ennallistamiseen. Avainasemassa työn onnistumisen kannalta ovat nyt paikalliset asukkaat, joiden maankäytön muutokset ovat jo selvästi edistänet luonnonmetsän ennalleen palautumista. Suomen Akatemia rahoitti vuosina 2004-2006 VITRI:n tutkimushanketta, josta Ping Zhou'n väitöskirjatyö muodosti keskeisen osan. Kenttätyö Sichuanissa avasi mahdollisuuden hedelmälliseen monitieteiseen yhteistyöhön ja tutkijavaihtoon Kiinan tiedeakatemian alaisen Chengdun biologiainstituutin (CIB) kanssa; tämä tieteellinen kanssakäyminen jatkuu edelleen.
Resumo:
This thesis examines the feasibility of a forest inventory method based on two-phase sampling in estimating forest attributes at the stand or substand levels for forest management purposes. The method is based on multi-source forest inventory combining auxiliary data consisting of remote sensing imagery or other geographic information and field measurements. Auxiliary data are utilized as first-phase data for covering all inventory units. Various methods were examined for improving the accuracy of the forest estimates. Pre-processing of auxiliary data in the form of correcting the spectral properties of aerial imagery was examined (I), as was the selection of aerial image features for estimating forest attributes (II). Various spatial units were compared for extracting image features in a remote sensing aided forest inventory utilizing very high resolution imagery (III). A number of data sources were combined and different weighting procedures were tested in estimating forest attributes (IV, V). Correction of the spectral properties of aerial images proved to be a straightforward and advantageous method for improving the correlation between the image features and the measured forest attributes. Testing different image features that can be extracted from aerial photographs (and other very high resolution images) showed that the images contain a wealth of relevant information that can be extracted only by utilizing the spatial organization of the image pixel values. Furthermore, careful selection of image features for the inventory task generally gives better results than inputting all extractable features to the estimation procedure. When the spatial units for extracting very high resolution image features were examined, an approach based on image segmentation generally showed advantages compared with a traditional sample plot-based approach. Combining several data sources resulted in more accurate estimates than any of the individual data sources alone. The best combined estimate can be derived by weighting the estimates produced by the individual data sources by the inverse values of their mean square errors. Despite the fact that the plot-level estimation accuracy in two-phase sampling inventory can be improved in many ways, the accuracy of forest estimates based mainly on single-view satellite and aerial imagery is a relatively poor basis for making stand-level management decisions.
Resumo:
The use of remote sensing imagery as auxiliary data in forest inventory is based on the correlation between features extracted from the images and the ground truth. The bidirectional reflectance and radial displacement cause variation in image features located in different segments of the image but forest characteristics remaining the same. The variation has so far been diminished by different radiometric corrections. In this study the use of sun azimuth based converted image co-ordinates was examined to supplement auxiliary data extracted from digitised aerial photographs. The method was considered as an alternative for radiometric corrections. Additionally, the usefulness of multi-image interpretation of digitised aerial photographs in regression estimation of forest characteristics was studied. The state owned study area located in Leivonmäki, Central Finland and the study material consisted of five digitised and ortho-rectified colour-infrared (CIR) aerial photographs and field measurements of 388 plots, out of which 194 were relascope (Bitterlich) plots and 194 were concentric circular plots. Both the image data and the field measurements were from the year 1999. When examining the effect of the location of the image point on pixel values and texture features of Finnish forest plots in digitised CIR photographs the clearest differences were found between front-and back-lighted image halves. Inside the image half the differences between different blocks were clearly bigger on the front-lighted half than on the back-lighted half. The strength of the phenomenon varied by forest category. The differences between pixel values extracted from different image blocks were greatest in developed and mature stands and smallest in young stands. The differences between texture features were greatest in developing stands and smallest in young and mature stands. The logarithm of timber volume per hectare and the angular transformation of the proportion of broadleaved trees of the total volume were used as dependent variables in regression models. Five different converted image co-ordinates based trend surfaces were used in models in order to diminish the effect of the bidirectional reflectance. The reference model of total volume, in which the location of the image point had been ignored, resulted in RMSE of 1,268 calculated from test material. The best of the trend surfaces was the complete third order surface, which resulted in RMSE of 1,107. The reference model of the proportion of broadleaved trees resulted in RMSE of 0,4292 and the second order trend surface was the best, resulting in RMSE of 0,4270. The trend surface method is applicable, but it has to be applied by forest category and by variable. The usefulness of multi-image interpretation of digitised aerial photographs was studied by building comparable regression models using either the front-lighted image features, back-lighted image features or both. The two-image model turned out to be slightly better than the one-image models in total volume estimation. The best one-image model resulted in RMSE of 1,098 and the two-image model resulted in RMSE of 1,090. The homologous features did not improve the models of the proportion of broadleaved trees. The overall result gives motivation for further research of multi-image interpretation. The focus may be improving regression estimation and feature selection or examination of stratification used in two-phase sampling inventory techniques. Keywords: forest inventory, digitised aerial photograph, bidirectional reflectance, converted image coordinates, regression estimation, multi-image interpretation, pixel value, texture, trend surface
Resumo:
A wide range of models used in agriculture, ecology, carbon cycling, climate and other related studies require information on the amount of leaf material present in a given environment to correctly represent radiation, heat, momentum, water, and various gas exchanges with the overlying atmosphere or the underlying soil. Leaf area index (LAI) thus often features as a critical land surface variable in parameterisations of global and regional climate models, e.g., radiation uptake, precipitation interception, energy conversion, gas exchange and momentum, as all areas are substantially determined by the vegetation surface. Optical wavelengths of remote sensing are the common electromagnetic regions used for LAI estimations and generally for vegetation studies. The main purpose of this dissertation was to enhance the determination of LAI using close-range remote sensing (hemispherical photography), airborne remote sensing (high resolution colour and colour infrared imagery), and satellite remote sensing (high resolution SPOT 5 HRG imagery) optical observations. The commonly used light extinction models are applied at all levels of optical observations. For the sake of comparative analysis, LAI was further determined using statistical relationships between spectral vegetation index (SVI) and ground based LAI. The study areas of this dissertation focus on two regions, one located in Taita Hills, South-East Kenya characterised by tropical cloud forest and exotic plantations, and the other in Gatineau Park, Southern Quebec, Canada dominated by temperate hardwood forest. The sampling procedure of sky map of gap fraction and size from hemispherical photographs was proven to be one of the most crucial steps in the accurate determination of LAI. LAI and clumping index estimates were significantly affected by the variation of the size of sky segments for given zenith angle ranges. On sloping ground, gap fraction and size distributions present strong upslope/downslope asymmetry of foliage elements, and thus the correction and the sensitivity analysis for both LAI and clumping index computations were demonstrated. Several SVIs can be used for LAI mapping using empirical regression analysis provided that the sensitivities of SVIs at varying ranges of LAI are large enough. Large scale LAI inversion algorithms were demonstrated and were proven to be a considerably efficient alternative approach for LAI mapping. LAI can be estimated nonparametrically from the information contained solely in the remotely sensed dataset given that the upper-end (saturated SVI) value is accurately determined. However, further study is still required to devise a methodology as well as instrumentation to retrieve on-ground green leaf area index . Subsequently, the large scale LAI inversion algorithms presented in this work can be precisely validated. Finally, based on literature review and this dissertation, potential future research prospects and directions were recommended.
Resumo:
This thesis presents novel modelling applications for environmental geospatial data using remote sensing, GIS and statistical modelling techniques. The studied themes can be classified into four main themes: (i) to develop advanced geospatial databases. Paper (I) demonstrates the creation of a geospatial database for the Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands, south-western Finland; (ii) to analyse species diversity and distribution using GIS techniques. Paper (II) presents a diversity and geographical distribution analysis for Scopulini moths at a world-wide scale; (iii) to study spatiotemporal forest cover change. Paper (III) presents a study of exotic and indigenous tree cover change detection in Taita Hills Kenya using airborne imagery and GIS analysis techniques; (iv) to explore predictive modelling techniques using geospatial data. In Paper (IV) human population occurrence and abundance in the Taita Hills highlands was predicted using the generalized additive modelling (GAM) technique. Paper (V) presents techniques to enhance fire prediction and burned area estimation at a regional scale in East Caprivi Namibia. Paper (VI) compares eight state-of-the-art predictive modelling methods to improve fire prediction, burned area estimation and fire risk mapping in East Caprivi Namibia. The results in Paper (I) showed that geospatial data can be managed effectively using advanced relational database management systems. Metapopulation data for Melitaea cinxia butterfly was successfully combined with GPS-delimited habitat patch information and climatic data. Using the geospatial database, spatial analyses were successfully conducted at habitat patch level or at more coarse analysis scales. Moreover, this study showed it appears evident that at a large-scale spatially correlated weather conditions are one of the primary causes of spatially correlated changes in Melitaea cinxia population sizes. In Paper (II) spatiotemporal characteristics of Socupulini moths description, diversity and distribution were analysed at a world-wide scale and for the first time GIS techniques were used for Scopulini moth geographical distribution analysis. This study revealed that Scopulini moths have a cosmopolitan distribution. The majority of the species have been described from the low latitudes, sub-Saharan Africa being the hot spot of species diversity. However, the taxonomical effort has been uneven among biogeographical regions. Paper III showed that forest cover change can be analysed in great detail using modern airborne imagery techniques and historical aerial photographs. However, when spatiotemporal forest cover change is studied care has to be taken in co-registration and image interpretation when historical black and white aerial photography is used. In Paper (IV) human population distribution and abundance could be modelled with fairly good results using geospatial predictors and non-Gaussian predictive modelling techniques. Moreover, land cover layer is not necessary needed as a predictor because first and second-order image texture measurements derived from satellite imagery had more power to explain the variation in dwelling unit occurrence and abundance. Paper V showed that generalized linear model (GLM) is a suitable technique for fire occurrence prediction and for burned area estimation. GLM based burned area estimations were found to be more superior than the existing MODIS burned area product (MCD45A1). However, spatial autocorrelation of fires has to be taken into account when using the GLM technique for fire occurrence prediction. Paper VI showed that novel statistical predictive modelling techniques can be used to improve fire prediction, burned area estimation and fire risk mapping at a regional scale. However, some noticeable variation between different predictive modelling techniques for fire occurrence prediction and burned area estimation existed.
Resumo:
There is an increasing requirement for more astute land resource management through efficiencies in agricultural inputs in a sugar cane production system. A precision agriculture (PA) approach can provide a pathway for a sustainable sugarcane production system. One of the impediments to the adoption of PA practices is access to paddock-scale mapping layers displaying variability in soil properties, crop growth and surface drainage. Variable rate application (VRA) of nutrients is an important component of PA. However, agronomic expertise within PA systems has fallen well behind significant advances in PA technologies. Generally, advisers in the sugar industry have a poor comprehension of the complex interaction of variables that contribute to within-paddock variations in crop growth. This is regarded as a significant impediment to the progression of PA in sugarcane and is one of the reasons for the poor adoption of VRA of nutrients in a PA approach to improved sugar cane production. This project therefore has established a number of key objectives which will contribute to the adoption of PA and the staged progression of VRA supported by relevant and practical agronomic expertise. These objectives include provision of base soils attribute mapping that can be determined using Veris 3100 Electrical Conductivity (EC) and digital elevation datasets using GPS mapping technology for a large sector of the central cane growing region using analysis of archived satellite imagery to determine the location and stability of yield patterns over time and in varying seasonal conditions on selected project study sites. They also include the stablishment of experiments to determine appropriate VRA nitrogen rates on various soil types subjected to extended anaerobic conditions, and the establishment of trials to determine nitrogen rates applicable to a declining yield potential associated with the aging of ratoons in the crop cycle. Preliminary analysis of archived yield estimation data indicates that yield patterns remain relatively stable overtime. Results also indicate the where there is considerable variability in EC values there is also significant variation in yield.
Resumo:
Feature films remain critical flagships to any national film industry. Australian feature films can be highly commercial endeavours that also perform symbolic functions by embodying the national imaginary in big screen based sound and imagery. They conduct a dialogue with domestic audiences as well as showcase key aspects of Australia in the global film festival circuit. As the pre-eminent filmmaking form, feature films also serve as important launchpads for the careers of many Australian writers, directors, actors and technical crew. In the wake of over a decade of diminished share of local box office obtained by Australian feature films, Australian Feature Films and Distribution: Industry or cottage industry, examines issues in the production sector affecting the performance of Australian feature films and some responses by the central funding and support screen agency, Screen Australia.
Resumo:
Much of our understanding and management of ecological processes requires knowledge of the distribution and abundance of species. Reliable abundance or density estimates are essential for managing both threatened and invasive populations, yet are often challenging to obtain. Recent and emerging technological advances, particularly in unmanned aerial vehicles (UAVs), provide exciting opportunities to overcome these challenges in ecological surveillance. UAVs can provide automated, cost-effective surveillance and offer repeat surveys for pest incursions at an invasion front. They can capitalise on manoeuvrability and advanced imagery options to detect species that are cryptic due to behaviour, life-history or inaccessible habitat. UAVs may also cause less disturbance, in magnitude and duration, for sensitive fauna than other survey methods such as transect counting by humans or sniffer dogs. The surveillance approach depends upon the particular ecological context and the objective. For example, animal, plant and microbial target species differ in their movement, spread and observability. Lag-times may exist between a pest species presence at a site and its detectability, prompting a need for repeat surveys. Operationally, however, the frequency and coverage of UAV surveys may be limited by financial and other constraints, leading to errors in estimating species occurrence or density. We use simulation modelling to investigate how movement ecology should influence fine-scale decisions regarding ecological surveillance using UAVs. Movement and dispersal parameter choices allow contrasts between locally mobile but slow-dispersing populations, and species that are locally more static but invasive at the landscape scale. We find that low and slow UAV flights may offer the best monitoring strategy to predict local population densities in transects, but that the consequent reduction in overall area sampled may sacrifice the ability to reliably predict regional population density. Alternative flight plans may perform better, but this is also dependent on movement ecology and the magnitude of relative detection errors for different flight choices. Simulated investigations such as this will become increasingly useful to reveal how spatio-temporal extent and resolution of UAV monitoring should be adjusted to reduce observation errors and thus provide better population estimates, maximising the efficacy and efficiency of unmanned aerial surveys.
Resumo:
Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising methodology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of this approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labelling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means clustering. The results show the algorithm delivers consistent decision boundaries that classify the field into three clusters, one for each crop health level as shown in Figure 1. The methodology presented in this paper represents a venue for further esearch towards automated crop damage assessments and biosecurity surveillance.
Resumo:
Multiresolution synthetic aperture radar (SAR) image formation has been proven to be beneficial in a variety of applications such as improved imaging and target detection as well as speckle reduction. SAR signal processing traditionally carried out in the Fourier domain has inherent limitations in the context of image formation at hierarchical scales. We present a generalized approach to the formation of multiresolution SAR images using biorthogonal shift-invariant discrete wavelet transform (SIDWT) in both range and azimuth directions. Particularly in azimuth, the inherent subband decomposition property of wavelet packet transform is introduced to produce multiscale complex matched filtering without involving any approximations. This generalized approach also includes the formulation of multilook processing within the discrete wavelet transform (DWT) paradigm. The efficiency of the algorithm in parallel form of execution to generate hierarchical scale SAR images is shown. Analytical results and sample imagery of diffuse backscatter are presented to validate the method.
Resumo:
Few published studies have monitored destination brand image over time. This temporal aspect is an important gap in the literature, given consensus around the role perceptions play in consumers’ decision making, and the ensuing emphasis on imagery in destination branding collateral. Whereas most destination image studies have been a snapshot of perceptions at one point in time, this paper presents findings from a survey implemented four times between 2003 and 2015. Brand image is the core construct in modelling destination branding performance, which has emerged as a relatively new field of research in the past decade. Using the consumer-based brand equity (CBBE) hierarchy, the project has benchmarked and monitored destination brand salience, image and resonance for an emerging regional destination, relative to key competitors, in the domestic Australian market; and the survey instrument has been demonstrated to be reliable in the context of short break holidays by car. What is particularly interesting to date is there has been relatively little change in the market positions of the five destinations, in spite of over a decade of marketing communications by the regional tourism organisations and their stakeholders, and more recently the mass of user-generated travel content on social media. The project didn’t analyse the actual marketing communications for each of the DMOs. Therefore an important implication is that irrespective of the level of marketing undertaken the DMOs seem to have had little control over the perceptions held in their largest market during this time period. Therefore it must be recognised any improvement in perceptions will likely take a long period of time, and so branding needs to be underpinned by a philosophy of a long term financial investment as well as commitment to a consistency of message over time; which given the politics of DMO decision making represents a considerable challenge.
Resumo:
‘Every face on Vanity Fair’s Hollywood covers 1995-2008’ renders an ethnographic-like study of Hollywood celebrity as a cinematic experience. Viewers are presented with constantly mutating portraits that violently twist and shear into other faces, while an immersive soundscape echoes the turbulent painterly surface. Through technical processes of scaling, looping and image morphing; the work explores a positive affectual response to the seductive power of celebrity imagery. Conceptually, given Vanity Fair magazine’s prestigious stature, the work also performs an ethnographic-mapping of the popularity of Hollywood stars over time, while at the same time creating in-between, ‘mutant’ versions of their visages. The installation explores the potential for fan-based responses to pop culture to lead to artworks that enable a more critical response to the subjective and intersubjective dynamics of celebrity portraiture. Questions are raised about how these cultural forms impact pop culture fans, and their role in the mapping of culture and social experience.
Resumo:
This paper presents a novel crop detection system applied to the challenging task of field sweet pepper (capsicum) detection. The field-grown sweet pepper crop presents several challenges for robotic systems such as the high degree of occlusion and the fact that the crop can have a similar colour to the background (green on green). To overcome these issues, we propose a two-stage system that performs per-pixel segmentation followed by region detection. The output of the segmentation is used to search for highly probable regions and declares these to be sweet pepper. We propose the novel use of the local binary pattern (LBP) to perform crop segmentation. This feature improves the accuracy of crop segmentation from an AUC of 0.10, for previously proposed features, to 0.56. Using the LBP feature as the basis for our two-stage algorithm, we are able to detect 69.2% of field grown sweet peppers in three sites. This is an impressive result given that the average detection accuracy of people viewing the same colour imagery is 66.8%.
Resumo:
Background Diabetic foot ulcers (DFU) are a leading cause of diabetes-related hospitalisation and can be costly to manage without access to appropriate expert care. Within Queensland and indeed across many parts of Australia, there is an inequality in accessing specialist services for individuals with DFU. Recent National Health and Medical Research Council (NHMRC) diabetic foot guidelines recommend remote expert consultation with digital imaging should be made available to people with DFU to improve their clinical outcomes. Telemedicine appears to show promise in improving access to diabetic foot specialist services; however diabetic foot telemedicine models to date have relied upon videoconferencing, store and forward technology and/or customised appliances to obtain digital imagery which all require either expensive infrastructure or a timed reply to the request for advice. Whilst mobile phone advice services have been used with success in general diabetes management and telehealth services have improved diabetic foot outcomes, the rapid emergence in the use of mobile phones has established a need to review the role that various forms of telemedicine play in the management of DFU. The aim of this paper is to review traditional telemedicine modalities that have been used in the management of DFU and to compare that to new and innovative technology that are emerging. Process Studies investigating the management of DFU using various forms of telemedicine interventions will be included in this review. They include the use of videoconferencing technology, hand held digital still photography purpose built imaging devices and mobile phone imagery. Electronic databases (Pubmed, Medline and CINAHL) will be searched using broad MeSH terms and keywords that cover the intended area of interest. Findings It is anticipated that the results of this narrative review will provide delegates of the 2015 Australasian Podiatry Conference an insight into the types of emerging innovative diagnostic telemedicine technologies in the management of DFU against the backdrop of traditional and evidence based modalities. It is anticipated that the findings will drive further research in the area of mobile phone imagery and innovation in the management of DFU.