947 resultados para ICC
Resumo:
Information-centric networking (ICN) has been proposed to cope with the drawbacks of the Internet Protocol, namely scalability and security. The majority of research efforts in ICN have focused on routing and caching in wired networks, while little attention has been paid to optimizing the communication and caching efficiency in wireless networks. In this work, we study the application of Raptor codes to Named Data Networking (NDN), which is a popular ICN architecture, in order to minimize the number of transmitted messages and accelerate content retrieval times. We propose RC-NDN, which is a NDN compatible Raptor codes architecture. In contrast to other coding-based NDN solutions that employ network codes, RC-NDN considers security architectures inherent to NDN. Moreover, different from existing network coding based solutions for NDN, RC-NDN does not require significant computational resources, which renders it appropriate for low cost networks. We evaluate RC-NDN in mobile scenarios with high mobility. Evaluations show that RC-NDN outperforms the original NDN significantly. RC-NDN is particularly efficient in dense environments, where retrieval times can be reduced by 83% and the number of Data transmissions by 84.5% compared to NDN.
Resumo:
Time-based indoor localization has been investigated for several years but the accuracy of existing solutions is limited by several factors, e.g., imperfect synchronization, signal bandwidth and indoor environment. In this paper, we compare two time-based localization algorithms for narrow-band signals, i.e., multilateration and fingerprinting. First, we develop a new Linear Least Square (LLS) algorithm for Differential Time Difference Of Arrival (DTDOA). Second, fingerprinting is among the most successful approaches used for indoor localization and typically relies on the collection of measurements on signal strength over the area of interest. We propose an alternative by constructing fingerprints of fine-grained time information of the radio signal. We offer comprehensive analytical discussions on the feasibility of the approaches, which are backed up by evaluations in a software defined radio based IEEE 802.15.4 testbed. Our work contributes to research on localization with narrow-band signals. The results show that our proposed DTDOA-based LLS algorithm obviously improves the localization accuracy compared to traditional TDOA-based LLS algorithm but the accuracy is still limited because of the complex indoor environment. Furthermore, we show that time-based fingerprinting is a promising alternative to power-based fingerprinting.
Resumo:
AIM To evaluate the performance of a pen‑type laser fluorescence device (DIAGNOdent 2190; LFpen, KaVo, Germany) and bitewing radiographs (BW) for approximal caries detection in permanent and primary teeth. MATERIALS AND METHODS A total of 246 anterior approximal surfaces (102 permanent and 144 primary) were selected. Contact points were simulated using sound teeth. Two examiners assessed all approximal surfaces using LFpen and BW. The teeth were histologically assessed for the reference standard. Optimal cut‑off limits were calculated for LFpen for primary and permanent teeth. Sensitivity, specificity, accuracy and area under the receiver operating characteristic curve (Az) were calculated for D1 (enamel and dentin lesions) and D3 (dentin lesions) thresholds. The reproducibility was assessed by intraclass correlation coefficient (ICC) and Cohen's weighted kappa values. RESULTS For permanent teeth, the LFpen cut‑off were 0- 27 (sound), 28- 33 (enamel caries) and >33 (dentin caries). For primary teeth, the LFpen cut‑off were 0- 7 (sound), 8- 32 (enamelcaries) and >32 (dentin caries). The LFpen presented higher sensitivity values than BW for primary teeth (0.58 vs. 0.32 at D1 and 0.80 vs. 0.47 at D3) and permanent teeth (0.80 vs. 0.57 at D1 and 0.94 vs. 0.51 at D3). Specificity did not show a significant difference between the methods. Rank correlations with histology were 0.59 and 0.83 (LFpen) and 0.36 and 0.70 (BW) for primary and permanent teeth, respectively, considering all lesions. ICC values for LFpen were 0.71 (inter) and 0.86 (intra) for permanent teeth and 0.94 (inter) and 0.90/0.99 for primary teeth. Kappa values for BW were 0.69 (inter) and 0.68/0.90 (intra) for permanent teeth and 0.64 (inter) and 0.89/0.89 for primary teeth. CONCLUSION LFpen presented better reproducibility for primary and permanent teeth and higher accuracy in detecting caries lesions at D1 threshold than BW for permanent teeth. LFpen should be used as an adjunct method for approximal caries detection.
Resumo:
Mobile networks usage rapidly increased over the years, with great consequences in terms of performance requirements. In this paper, we propose mechanisms to use Information-Centric Networking to perform load balancing in mobile networks, providing content delivery over multiple radio technologies at the same time and thus efficiently using resources and improving the overall performance of content transfer. Meaningful results were obtained by comparing content transfer over single radio links with typical strategies to content transfer over multiple radio links with Information-Centric Networking load balancing. Results demonstrate that Information-Centric Networking load balancing increases the performance and efficiency of 3GPP Long Term Evolution mobile networks while greatly improving the network perceived quality for end users.
Resumo:
Cloudification of the Centralized-Radio Access Network (C-RAN) in which signal processing runs on general purpose processors inside virtual machines has lately received significant attention. Due to short deadlines in the LTE Frequency Division Duplex access method, processing time fluctuations introduced by the virtualization process have a deep impact on C-RAN performance. This paper evaluates bottlenecks of the OpenAirInterface (OAI is an open-source software-based implementation of LTE) cloud performance, provides feasibility studies on C-RAN execution, and introduces a cloud architecture that significantly reduces the encountered execution problems. In typical cloud environments, the OAI processing time deadlines cannot be guaranteed. Our proposed cloud architecture shows good characteristics for the OAI cloud execution. As an example, in our setup more than 99.5% processed LTE subframes reach reasonable processing deadlines close to performance of a dedicated machine.
Resumo:
BACKGROUND Biomarkers are a promising tool for the management of patients with atherosclerosis, but their variation is largely unknown. We assessed within-subject and between-subject biological variation of biomarkers in peripheral artery disease (PAD) patients and healthy controls, and defined which biomarkers have a favorable variation profile for future studies. METHODS Prospective, parallel-group cohort study, including 62 patients with stable PAD (79% men, 65±7years) and 18 healthy control subjects (44% men, 57±7years). Blood samples were taken at baseline, and after 3-, 6-, and 12-months. We calculated within-subject (CVI) and between-subject (CVG) coefficients of variation and intra-class correlation coefficient (ICC). RESULTS Mean levels of D-dimer, hs-CRP, IL-6, IL-8, MMP-9, MMP-3, S100A8/A9, PAI-1, sICAM-1, and sP-selectin levels were higher in PAD patients than in healthy controls (P≤.05 for all). CVI and CVG of the different biomarkers varied considerably in both groups. An ICC≥0.5 (indicating moderate-to-good reliability) was found for hs-CRP, D-Dimer, E-selectin, IL-10, MCP-1, MMP-3, oxLDL, sICAM-1 and sP-selectin in both groups, for sVCAM in healthy controls and for MMP-9, PAI-1 and sCD40L in PAD patients. CONCLUSIONS Single biomarker measurements are of limited utility due to large within-subject variation, both in PAD patients and healthy subjects. D-dimer, hs-CRP, MMP-9, MMP-3, PAI-1, sP-selectin and sICAM-1 are biomarkers with both higher mean levels in PAD patients and a favorable variation profile making them most suitable for future studies.
Resumo:
Tumor budding in colorectal cancer (CRC) is recognized as a valuable prognostic factor but its translation into daily histopathology practice has been delayed by lack of agreement on the optimal method of assessment. Within the context of the Swiss Association of Gastrointestinal Pathology (SAGIP), we performed a multicenter interobserver study on tumor budding, comparing hematoxylin and eosin (H&E) with pan-cytokeratin staining using a 10 high power field (10HPF) and hotspot (1HPF) method. Two serial sections of 50 TNM stage II-IV surgically treated CRC were stained for H&E and pan-cytokeratin. Tumor buds were scored by independent observers at six participating centers in Switzerland and Austria using the 10HPF and 1HPF method on a digital pathology platform. Pearson correlation (r) and intra-class correlation coefficients (ICC) comparing scores between centers were calculated. Three to four times more tumor buds were detected in pan-cytokeratin compared to H&E slides. Correlation coefficients for tumor budding counts between centers ranged from r = 0.46 to r = 0.91 for H&E and from r = 0.73 to r = 0.95 for pan-cytokeratin slides. Interobserver agreement across all centers was excellent for pan-cytokeratin [10HPF: ICC = 0.83 and 1HPF: ICC = 0.8]. In contrast, assessment of tumor budding on H&E slides reached only moderate agreement [10HPF: ICC = 0.58 and 1HPF: ICC = 0.49]. Based on previous literature and our findings, we recommend (1) pan-cytokeratin staining whenever possible, (2) 10HPF method for resection specimens, and (3) 1HPF method for limited material (preoperative biopsy or pT1). Since tumor budding counts can be used to determine probabilities of relevant outcomes and as such more optimally complement clinical decision making, we advocate the avoidance of cutoff scores.
Resumo:
HIV-infected women are at increased risk of cervical intra-epithelial neoplasia (CIN) and invasive cervical cancer (ICC), but it has been difficult to disentangle the influences of heavy exposure to HPV infection, inadequate screening, and immunodeficiency. A case-control study including 364 CIN2/3 and 20 ICC cases matched to 1,147 controls was nested in the Swiss HIV Cohort Study (1985-2013). CIN2/3 risk was significantly associated with low CD4+ cell counts, whether measured as nadir (odds ratio (OR) per 100-cell/μL decrease=1.15, 95% CI: 1.08, 1.22), or at CIN2/3 diagnosis (1.10, 95% CI: 1.04, 1.16). An association was evident even for nadir CD4+ 200-349 versus ≥350 cells/μL (OR=1.57, 95% CI: 1.09, 2.25). After adjustment for nadir CD4+, a protective effect of >2-year cART use was seen against CIN2/3 (OR versus never cART use=0.64, 95% CI: 0.42, 0.98). Despite low study power, similar associations were seen for ICC, notably with nadir CD4+ (OR for 50 versus >350 cells/μL= 11.10, 95% CI: 1.24, 100). HPV16-L1 antibodies were significantly associated with CIN2/3, but HPV16-E6 antibodies were nearly exclusively detected in ICC. In conclusion, worsening immunodeficiency, even at only moderately decreased CD4+ cell counts (200-349 CD4+ cells/μL), is a significant risk factor for CIN2/3 and cervical cancer. This article is protected by copyright. All rights reserved.
Resumo:
BACKGROUND: The robotics-assisted tilt table (RATT), including actuators for tilting and cyclical leg movement, is used for rehabilitation of severely disabled neurological patients. Following further engineering development of the system, i.e. the addition of force sensors and visual bio-feedback, patients can actively participate in exercise testing and training on the device. Peak cardiopulmonary performance parameters were previously investigated, but it also important to compare submaximal parameters with standard devices. The aim of this study was to evaluate the feasibility of the RATT for estimation of submaximal exercise thresholds by comparison with a cycle ergometer and a treadmill. METHODS: 17 healthy subjects randomly performed six maximal individualized incremental exercise tests, with two tests on each of the three exercise modalities. The ventilatory anaerobic threshold (VAT) and respiratory compensation point (RCP) were determined from breath-by-breath data. RESULTS: VAT and RCP on the RATT were lower than the cycle ergometer and the treadmill: oxygen uptake (V'O2) at VAT was [mean (SD)] 1.2 (0.3), 1.5 (0.4) and 1.6 (0.5) L/min, respectively (p < 0.001); V'O2 at RCP was 1.7 (0.4), 2.3 (0.8) and 2.6 (0.9) L/min, respectively (p = 0.001). High correlations for VAT and RCP were found between the RATT vs the cycle ergometer and RATT vs the treadmill (R on the range 0.69-0.80). VAT and RCP demonstrated excellent test-retest reliability for all three devices (ICC from 0.81 to 0.98). Mean differences between the test and retest values on each device were close to zero. The ventilatory equivalent for O2 at VAT for the RATT and cycle ergometer were similar and both were higher than the treadmill. The ventilatory equivalent for CO2 at RCP was similar for all devices. Ventilatory equivalent parameters demonstrated fair-to-excellent reliability and repeatability. CONCLUSIONS: It is feasible to use the RATT for estimation of submaximal exercise thresholds: VAT and RCP on the RATT were lower than the cycle ergometer and the treadmill, but there were high correlations between the RATT vs the cycle ergometer and vs the treadmill. Repeatability and test-retest reliability of all submaximal threshold parameters from the RATT were comparable to those of standard devices.
Resumo:
BACKGROUND: Several parameters of heart rate variability (HRV) have been shown to predict the risk of sudden cardiac death (SCD) in cardiac patients. There is consensus that risk prediction is increased when measuring HRV during specific provocations such as orthostatic challenge. For the first time, we provide data on reproducibility of such a test in patients with a history of acute coronary syndrome. METHODS: Sixty male patients (65+/-8years) with a history of acute coronary syndrome on stable medication were included. HRV was measured in supine (5min) and standing (5min) position on 2 occasions separated by two weeks. For risk assessment relevant time-domain [standard deviation of all R-R intervals (SDNN) and root mean squared standard differences between adjacent R-R intervals (RMSSD)], frequency domain [low-frequency power (LF), high-frequency power (HF) and LF/HF power ratio] and short-term fractal scaling component (DF1) were computed. Absolute reproducibility was assessed with the standard errors of the mean (SEM) and 95% limits of random variation, and relative reproducibility by the intraclass correlation coefficient (ICC). RESULTS: We found comparable SEMs and ICCs in supine position and after an orthostatic challenge test. All ICCs were good to excellent (ICCs between 0.636 and 0.869). CONCLUSIONS: Reproducibility of HRV parameters during orthostatic challenge is good and comparable with supine position.
Resumo:
The aim of this study was to test a newly developed LED-based fluorescence device for approximal caries detection in vitro. We assembled 120 extracted molars without frank cavitations or fillings pairwise in order to create contact areas. The teeth were independently assessed by two examiners using visual caries detection (International Caries Detection and Assessment System, ICDAS), bitewing radiography (BW), laser fluorescence (LFpen), and LED fluorescence (Midwest Caries I.D., MW). The measurements were repeated at least 1 week later. The diagnostic performance was calculated with Bayesian analyses. Post-test probabilities were calculated in order to judge the diagnostic performance of combined methods. Reliability analyses were performed using kappa statistics for nominal data and intraclass correlation (ICC) for absolute data. Histology served as the gold standard. Sensitivities/specificities at the enamel threshold were 0.33/0.84 for ICDAS, 0.23/0.86 for BW, 0.47/0.78 for LFpen, and 0.32/0.87 for MW. Sensitivities/specificities at the dentine threshold were 0.04/0.89 for ICDAS, 0.27/0.94 for BW, 0.39/0.84 for LFpen, and 0.07/0.96 for MW. Reliability data were fair to moderate for MW and good for BW and LFpen. The combination of ICDAS and radiography yielded the best diagnostic performance (post-test probability of 0.73 at the dentine threshold). The newly developed LED device is not able to be recommended for approximal caries detection. There might be too much signal loss during signal transduction from the occlusal aspect to the proximal lesion site and the reverse.
Resumo:
OBJECTIVE The aim of this study was to directly compare metal artifact reduction (MAR) of virtual monoenergetic extrapolations (VMEs) from dual-energy computed tomography (CT) with iterative MAR (iMAR) from single energy in pelvic CT with hip prostheses. MATERIALS AND METHODS A human pelvis phantom with unilateral or bilateral metal inserts of different material (steel and titanium) was scanned with third-generation dual-source CT using single (120 kVp) and dual-energy (100/150 kVp) at similar radiation dose (CT dose index, 7.15 mGy). Three image series for each phantom configuration were reconstructed: uncorrected, VME, and iMAR. Two independent, blinded radiologists assessed image quality quantitatively (noise and attenuation) and subjectively (5-point Likert scale). Intraclass correlation coefficients (ICCs) and Cohen κ were calculated to evaluate interreader agreements. Repeated measures analysis of variance and Friedman test were used to compare quantitative and qualitative image quality. Post hoc testing was performed using a corrected (Bonferroni) P < 0.017. RESULTS Agreements between readers were high for noise (all, ICC ≥ 0.975) and attenuation (all, ICC ≥ 0.986); agreements for qualitative assessment were good to perfect (all, κ ≥ 0.678). Compared with uncorrected images, VME showed significant noise reduction in the phantom with titanium only (P < 0.017), and iMAR showed significantly lower noise in all regions and phantom configurations (all, P < 0.017). In all phantom configurations, deviations of attenuation were smallest in images reconstructed with iMAR. For VME, there was a tendency toward higher subjective image quality in phantoms with titanium compared with uncorrected images, however, without reaching statistical significance (P > 0.017). Subjective image quality was rated significantly higher for images reconstructed with iMAR than for uncorrected images in all phantom configurations (all, P < 0.017). CONCLUSIONS Iterative MAR showed better MAR capabilities than VME in settings with bilateral hip prosthesis or unilateral steel prosthesis. In settings with unilateral hip prosthesis made of titanium, VME and iMAR performed similarly well.
Resumo:
PURPOSE Stress urinary incontinence (SUI) affects women of all ages including young athletes, especially those involved in high-impact sports. To date, hardly any studies are available testing pelvic floor muscles (PFM) during sports activities. The aim of this study was the description and reliability test of six PFM electromyography (EMG) variables during three different running speeds. The secondary objective was to evaluate whether there was a speed-dependent difference between the PFM activity variables. METHODS This trial was designed as an exploratory and reliability study including ten young healthy female subjects to characterize PFM pre-activity and reflex activity during running at 7, 9 and 11 km/h. Six variables for each running speed, averaged over ten steps per subject, were presented descriptively, tested regarding their reliability (Friedman, ICC, SEM, MD) and speed difference (Friedman). RESULTS PFM EMG variables varied between 67.6 and 106.1 %EMG, showed no systematic error and were low for SEM and MD using the single value model. Applying the average model over ten steps, ICC (3,k) were >0.75 and SEM and MD about 50 % lower than for the single value model. Activity was found to be highest in 11 km/h. CONCLUSION EMG variables showed excellent ICC and very low SEM and MD. Further studies should investigate inter-session reliability and PFM reactivity patterns of SUI patients using the average over ten steps for each variable as it showed very high ICC and very low SEM and MD. Subsequently, longer running distances and other high-impact sports disciplines could be studied.
Resumo:
Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranging and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1.3m for mean accuracy and 2.2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.