872 resultados para Hydrologic Modeling Catchment and Runoff Computations
Resumo:
Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.
Resumo:
Process modeling can be regarded as the currently most popular form of conceptual modeling. Research evidence illustrates how process modeling is applied across the different information system life cycle phases for a range of different applications, such as configuration of Enterprise Systems, workflow management, or software development. However, a detailed discussion of critical factors of the quality of process models is still missing. This paper proposes a framework consisting of six quality factors, which is derived from a comprehensive literature review. It then presents in a case study, a utility provider, who had designed various business process models for the selection of an Enterprise System. The paper summarizes potential means of conducting a successful process modeling initiative and evaluates the described modeling approach within the Guidelines of Modeling (GoM) framework. An outlook shows the potential lessons learnt, and concludes with insights to the next phases of this study.
Resumo:
As process management projects have increased in size due to globalised and company-wide initiatives, a corresponding growth in the size of process modeling projects can be observed. Despite advances in languages, tools and methodologies, several aspects of these projects have been largely ignored by the academic community. This paper makes a first contribution to a potential research agenda in this field by defining the characteristics of large-scale process modeling projects and proposing a framework of related issues. These issues are derived from a semi -structured interview and six focus groups conducted in Australia, Germany and the USA with enterprise and modeling software vendors and customers. The focus groups confirm the existence of unresolved problems in business process modeling projects. The outcomes provide a research agenda which directs researchers into further studies in global process management, process model decomposition and the overall governance of process modeling projects. It is expected that this research agenda will provide guidance to researchers and practitioners by focusing on areas of high theoretical and practical relevance.
Resumo:
This study employs BP neural network to simulate the development of Chinese private passenger cars. Considering the uncertain and complex environment for the development of private passenger cars, indicators of economy, population, price, infrastructure, income, energy and some other fields which have major impacts on it are selected at first. The network is proved to be operable to simulate the progress of chinese private passenger cars after modeling, training and generalization test. Based on the BP neural network model, sensitivity analysis of each indicator is carried on and shows that the sensitivity coefficients of fuel price change suddenly. This special phenomenon reveals that the development of Chinese private passenger cars may be seriously affected by the recent high fuel price. This finding is also consistent with facts and figures
Resumo:
Queensland University of Technology (QUT) is a large multidisciplinary university located in Brisbane, Queensland, Australia. QUT is increasing its research focus and is developing its research support services. It has adopted a model of collaboration between the Library, High Performance Computing and Research Support (HPC) and more broadly with Information Technology Services (ITS). Research support services provided by the Library include the provision of information resources and discovery services, bibliographic management software, assistance with publishing (publishing strategies, identifying high impact journals, dealing with publishers and the peer review process), citation analysis and calculating authors’ H Index. Research data management services are being developed by the Library and HPC working in collaboration. The HPC group within ITS supports research computing infrastructure, research development and engagement activities, researcher consultation, high speed computation and data storage systems , 2D/ 3D (immersive) visualisation tools, parallelisation and optimization of research codes, statistics/ data modeling training and support (both qualitative and quantitative) and support for the university’s central Access Grid collaboration facility. Development and engagement activities include participation in research grants and papers, student supervision and internships and the sponsorship, incubation and adoption of new computing technologies for research. ITS also provides other services that support research including ICT training, research infrastructure (networking, data storage, federated access and authorization, virtualization) and corporate systems for research administration. Seminars and workshops are offered to increase awareness and uptake of new and existing services. A series of online surveys on eResearch practices and skills and a number of focus groups was conducted to better inform the development of research support services. Progress towards the provision of research support is described within the context organizational frameworks; resourcing; infrastructure; integration; collaboration; change management; engagement; awareness and skills; new services; and leadership. Challenges to be addressed include the need to redeploy existing operational resources toward new research support services, supporting a rapidly growing research profile across the university, the growing need for the use and support of IT in research programs, finding capacity to address the diverse research support needs across the disciplines, operationalising new research support services following their implementation in project mode, embedding new specialist staff roles, cross-skilling Liaison Librarians, and ensuring continued collaboration between stakeholders.
Resumo:
As organizations reach higher levels of Business Process Management maturity, they tend to collect numerous business process models. Such models may be linked with each other or mutually overlap, supersede one another and evolve over time. Moreover, they may be represented at different abstraction levels depending on the target audience and modeling purpose, and may be available in multiple languages (e.g. due to company mergers). Thus, it is common that organizations struggle with keeping track of their process models. This demonstration introduces AProMoRe (Advanced Process Model Repository) which aims to facilitate the management of (large) process model collections.
Resumo:
On the microscale, migration, proliferation and death are crucial in the development, homeostasis and repair of an organism; on the macroscale, such effects are important in the sustainability of a population in its environment. Dependent on the relative rates of migration, proliferation and death, spatial heterogeneity may arise within an initially uniform field; this leads to the formation of spatial correlations and can have a negative impact upon population growth. Usually, such effects are neglected in modeling studies and simple phenomenological descriptions, such as the logistic model, are used to model population growth. In this work we outline some methods for analyzing exclusion processes which include agent proliferation, death and motility in two and three spatial dimensions with spatially homogeneous initial conditions. The mean-field description for these types of processes is of logistic form; we show that, under certain parameter conditions, such systems may display large deviations from the mean field, and suggest computationally tractable methods to correct the logistic-type description.
Resumo:
A diagnostic method based on Bayesian Networks (probabilistic graphical models) is presented. Unlike conventional diagnostic approaches, in this method instead of focusing on system residuals at one or a few operating points, diagnosis is done by analyzing system behavior patterns over a window of operation. It is shown how this approach can loosen the dependency of diagnostic methods on precise system modeling while maintaining the desired characteristics of fault detection and diagnosis (FDD) tools (fault isolation, robustness, adaptability, and scalability) at a satisfactory level. As an example, the method is applied to fault diagnosis in HVAC systems, an area with considerable modeling and sensor network constraints.
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by “continuing education as usual” (The National Academies, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualization. These technologies have led to significant changes in the forms of mathematical thinking that are required beyond the classroom. This paper argues for the need to incorporate future-oriented understandings and competencies within the mathematics curriculum, through intellectually stimulating activities that draw upon multidisciplinary content and contexts. The paper also argues for greater recognition of children’s learning potential, as increasingly complex learners capable of dealing with cognitively demanding tasks.
Resumo:
We propose to use the Tensor Space Modeling (TSM) to represent and analyze the user’s web log data that consists of multiple interests and spans across multiple dimensions. Further we propose to use the decomposition factors of the Tensors for clustering the users based on similarity of search behaviour. Preliminary results show that the proposed method outperforms the traditional Vector Space Model (VSM) based clustering.
Resumo:
Process modeling grammars are used to create models of business processes. In this paper, we discuss how different routing symbol designs affect an individual's ability to comprehend process models. We conduct an experiment with 154 students to ascertain which visual design principles influence process model comprehension. Our findings suggest that design principles related to perceptual discriminability and pop out improve comprehension accuracy. Furthermore, semantic transparency and aesthetic design of symbols lower the perceived difficulty of comprehension. Our results inform important principles about notational design of process modeling grammars and the effective use of process modeling in practice.
Resumo:
This paper presents an approach to developing indicators for expressing resilience of a generic water supply system. The system is contextualised as a meta-system consisting of three subsystems to represent the water catchment and reservoir, treatment plant and the distribution system supplying the end-users. The level of final service delivery to end-users is considered as a surrogate measure of systemic resilience. A set of modelled relationships are used to explore relationships between system components when placed under simulated stress. Conceptual system behaviour of specific types of simulated pressure is created for illustration of parameters for indicator development. The approach is based on the hypothesis that an in-depth knowledge of resilience would enable development of decision support system capability which in turn will contribute towards enhanced management of a water supply system. In contrast to conventional water supply system management approaches, a resilience approach facilitates improvement in system efficiency by emphasising awareness of points-of-intervention where system managers can adjust operational control measures across the meta-system (and within subsystems) rather than expansion of the system in entirety in the form of new infrastructure development.
A hybrid simulation framework to assess the impact of renewable generators on a distribution network
Resumo:
With an increasing number of small-scale renewable generator installations, distribution network planners are faced with new technical challenges (intermittent load flows, network imbalances…). Then again, these decentralized generators (DGs) present opportunities regarding savings on network infrastructure if installed at strategic locations. How can we consider both of these aspects when building decision tools for planning future distribution networks? This paper presents a simulation framework which combines two modeling techniques: agent-based modeling (ABM) and particle swarm optimization (PSO). ABM is used to represent the different system units of the network accurately and dynamically, simulating over short time-periods. PSO is then used to find the most economical configuration of DGs over longer periods of time. The infrastructure of the framework is introduced, presenting the two modeling techniques and their integration. A case study of Townsville, Australia, is then used to illustrate the platform implementation and the outputs of a simulation.
Resumo:
Readily accepted knowledge regarding crash causation is consistently omitted from efforts to model and subsequently understand motor vehicle crash occurrence and their contributing factors. For instance, distracted and impaired driving accounts for a significant proportion of crash occurrence, yet is rarely modeled explicitly. In addition, spatially allocated influences such as local law enforcement efforts, proximity to bars and schools, and roadside chronic distractions (advertising, pedestrians, etc.) play a role in contributing to crash occurrence and yet are routinely absent from crash models. By and large, these well-established omitted effects are simply assumed to contribute to model error, with predominant focus on modeling the engineering and operational effects of transportation facilities (e.g. AADT, number of lanes, speed limits, width of lanes, etc.) The typical analytical approach—with a variety of statistical enhancements—has been to model crashes that occur at system locations as negative binomial (NB) distributed events that arise from a singular, underlying crash generating process. These models and their statistical kin dominate the literature; however, it is argued in this paper that these models fail to capture the underlying complexity of motor vehicle crash causes, and thus thwart deeper insights regarding crash causation and prevention. This paper first describes hypothetical scenarios that collectively illustrate why current models mislead highway safety researchers and engineers. It is argued that current model shortcomings are significant, and will lead to poor decision-making. Exploiting our current state of knowledge of crash causation, crash counts are postulated to arise from three processes: observed network features, unobserved spatial effects, and ‘apparent’ random influences that reflect largely behavioral influences of drivers. It is argued; furthermore, that these three processes in theory can be modeled separately to gain deeper insight into crash causes, and that the model represents a more realistic depiction of reality than the state of practice NB regression. An admittedly imperfect empirical model that mixes three independent crash occurrence processes is shown to outperform the classical NB model. The questioning of current modeling assumptions and implications of the latent mixture model to current practice are the most important contributions of this paper, with an initial but rather vulnerable attempt to model the latent mixtures as a secondary contribution.