925 resultados para Hydrogen fuel cell


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper studies the direct oxidation of ethanol and CO on PdO/Ce0.75Zr0.25O2 and Ce(0.75)Zr(0.2)5O(2) catalysts. Characterization of catalysts is carried out by temperature-programmed desorption (TPD), temperature-programmed surface reaction (TPSR) techniques to correlate with catalytic properties and the effect of supports on PdO. The simple Ce0.75Zr0.25O2 is in less active for ethanol and CO oxidation. After loaded with PdO, the catalytic activity enhances effectively. Combined the ethanol and CO oxidation activity with CO-TPD and ethanol-TPSR profiles, we can find the more intensive of CO2 desorption peaks, the higher it is for the oxidation of CO and ethanol. Conversion versus yield plot shows the acetaldehyde is the primary product, the secondary products are acetic acid, ethyl acetate and ethylene, and the final product is CO2. A simplified reaction scheme (not surface mechanism) is suggested that ethanol is first oxidized to form intermediate of acetaldehyde, then acetic acid, ethyl acetate and ethylene formed going with the formation of acetaldehyde, acetic acid, ethyl acetate; finally these byproducts are further oxidized to produce CO2. PdO/Ce0.75Zr0.25O2 catalyst has much higher catalytic activity not only for the oxidation of ethanol but also for CO oxidation. Thus the CO poison effect on PdO/Ce0.75Zr0.25O2 catalysts can be decreased and they have the feasibility for application in direct alcohol fuel cell (DAFC) with high efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sulfonated poly(ether ether ketone) (SPEEK) and aminopropyltriethoxysilane (KH550) hybrid membranes doped with different weight ratio of phosphotungstic acid (PWA) were prepared by the casting procedure, as well as PWA as a catalyst for sol-gel process of KH550. The chemical structures of hybrid membranes were characterized by energy dispersive X-ray spectrometry (EDX) and Fourier transform infrared spectroscopy (FTIR). The morphology of hybrid membranes was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results had proved the uniform and homogeneous distribution of KH550 and PWA in these hybrid membranes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel sulfonated poly [bis(benzimidazobenzisoquinolinones)] as hydrolytically and thermooxidatively stable electrolyte for high -temperature fuel cell applications are reported. A series of sulfonated polymers (SPBIBI-x, x refers to molar percentage of sulfonated dianhydride monomer) were synthesized from 6,6'-disulfonic-4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (SBTDA), 4,4-binaphthyl-1,1,8,8-tetracarboxylic dianhydride (BTDA), and 3,3'-diaminobenzidine. The chemical structures of those polymers as well as model compounds synthesized from SBTDA and o-phenylenediamine were confirmed by nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A sulfonated dianhydride monomer, 6,6-disulfonic-4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (SBTDA), was successfully synthesized by direct sulfonation of the parent dianhydride, 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), using fuming sulfuric acid as the sulfonating reagent. A series of sulfonated homopolyimides were prepared from SBTDA and various common nonsulfonated diamines. The resulting polymer electrolytes, which contain ion conductivity sites on the deactivated positions of the aryl backbone rings, displayed high proton conductivities of 0.25-0.31 S cm(-1) at 80 degrees C. The oxidative stability test indicated that the attachment of the -SO3H groups onto the dianhydride units did not deteriorate the oxidative stability of the SPI membranes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of novel sulfonated poly(arylene-co-binaphthalimide)s (SPPIs) were successfully synthesized via Ni(0) catalytic coupling of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and bis(chloronaphthalimide)s. Bis(chloronaphthalimide)s were conveniently prepared from 5-chloro-1,8-naphthalic anhydride and various diamines. Tough and transparent SPPI membranes were prepared and the electrolyte properties of the copolymers were intensively investigated as were the effects of different diamine structures on the copolymer characterisitics. The copolymer membrane Ia-80, with an ion exchange capacity (IEC) of 2.50 meq g(-1), displayed a higher proton conductivity, i.e. 0.135 S cm(-1) at 20 degrees C, as compared to Nafion 117 (0.09 S cm(-1), 20 degrees C).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synthesis and characterization of novel acid-base polyimide membranes for the use in polymer electrolyte membrane fuel cell is presented in this paper. The sulfonated polyimides (SPIs) bearing basic triphenylamine groups were easily synthesized using 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), sulfonated diamine of 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS), and nonsulfonated diamines of 4,4'-diaminotriphenylamine (DATPA). The effects of the structure of the dianhydride and diamines on the properties of SPI membranes were evaluated through the study of membrane parameters including water sorption, proton conductivity, water stability, dimensional changes, and methanol permeability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combined with polymer wrapping and layer-by-layer techniques, a noncovalent functionalization method is developed to disperse Pt nanocubes (NCs) onto carbon nanotubes (CNTs). By adjusting the relative ratio of Pt NCs to CNTs, nanotubes with different Pt NC loadings are produced. The composites exhibit excellent electrocatalytic activity towards oxygen reduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple layer-by-layer (LBL) electrostatic adsorption technique was developed for deposition of films composed of alternating layers of positively charged poly(diallyldimethylammonium chloride) (PDDA) and negatively charged multiwall carbon nanotubes bearing platinum nanoparticles (Pt-CNTs). PDDA/Pt-CNT film structure and morphology up to six layers were characterized by scanning electron microscopy and ultraviolet-visible spectroscopy, showing the Pt-CNT layers to be porous and uniformly deposited within the multilayer films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel colloid method using (WO3)(n)center dot xH(2)O as colloidal source was developed to prepare Pd/C catalyst for formic acid oxidation. Transmission electron microscopy image shows that the Pd/C nanoparticles have an average size of 3.3 nm and a narrow size distribution. Electrochemical measurements indicate that the Pd/C catalyst exhibits significantly high electrochemical active surface area and high catalytic activity with good stability for formic acid oxidation compared with that prepared by common method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple and rapid synthesis method (denoted as modified impregnation method, MI) for PtRu/CNTs (MI) and PtRu/C (MI) was presented. PtRu/CNTs (MI) and PtRu/C (MI) catalysts were characterized by transmission electron microscopy (TEM) and X-ray diffractometry. It was shown that Pt-Ru particles with small average size (2.7 nm) were uniformly dispersed on carbon supports (carbon nanotubes and carbon black) and displayed the characteristic diffraction peaks of Pt face-centered cubic structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of sulfonated polyimides (SPIs) containing pyridine ring in the polymer backbone were synthesized by the polycondensation of 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTDA), 5-(2,6-bis(4-arninophenyl)pyridin-4-yl)-2-methoxy benzene sulfonic acid (SDAM), and 4,4'-diaminodiphenyl ether (ODA). Flexible, transparent, and tough membranes were obtained. Property study revealed that all the membranes displayed high thermal stability with the desulfonation and decomposition temperature higher than 290 and 540 degrees C, respectively, as well as good mechanical property with Young's modulus larger than 1.0 GPa, maximum strength (MS) on a scale of 60-80 MPa, and elongation at break (EB) ranged from 41.79 to 75.17%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strings of interconnected hollow carbon nanoparticles with porous shells were prepared by simple heat-treatments of a mixture of resorcinol-formaldehyde gel and transition-metal salts. The sample was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and nitrogen adsorption. Results show that the sample consisted of relatively uniform hollow particles with sizes ranging from 70 to 80 nm forming a strings-of-pearls-like nanostructure. The material with porous shells possessed well-developed graphitic structure with an interlayer (d(002)) spacing of 0.3369 nm and the stack height of the graphite crystallites of 9 nm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new monomer 1,5-bis(4-fluorobenzoyl)-2,6-dimethoxynaphthalene (DMNF) was prepared and further polymerized to form naphthalene-based poly(arylene ether ketone) copolymers containing methoxy groups (MNPAEKs). The side-chain-type sulfortated naphthalene-based poly(arylene ether ketone) copolymers (SNPAEKs) were obtained by demethylation and sulfobutylation. Flexible and tough membranes with reasonably high mechanical strength were prepared. The SNPAEKs membrane showed anisotropic membrane swelling with larger swelling in thickness than in plane. Transmission electron microscopy (TEM) analysis revealed clear nano-phase separated structure of SNPAEKs membranes, which composed of hydrophilic side chain and hydrophobic main-chain domains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a hollow Au/Pd core/shell nanostructure with a raspberry surface was developed for methanol, ethanol, and formic acid oxidation in alkaline media. The results showed that it possessed better electrocatalyst performance than hollow Au nanospheres or Pd nanoparticles. The nanostructure was fabricated via a two-step method. Hollow Au nanospheres were first synthesized by a galvanic replacement reaction, and then they were coated with a layer of Pd grains. Several characterizations such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) were used to investigate the prepared nanostructures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of novel multiblock copolymers based on sulfonated copolyimides were developed and evaluated for use as proton exchange membranes (PEMs). In these multiblock copolyimides, the hydrophilic blocks were composed of the sulfonated dianhydride and the sulfonated diamine, with sulfonic acid groups on every aromatic ring (i.e., fully sulfonated). This molecular design was implemented to effectively enhance the proton conductivity. The properties of the multiblock copolyimides with varying IEC values or block lengths were investigated to obtain a better understanding of the relationship between molecular structure and properties of proton exchange membranes. The water uptake and proton conductivity were found to be highly dependent upon their structure. The block copolymers displayed significantly higher proton conductivities, especially at low relative humidity than the random copolymers with a similar IEC.