926 resultados para Hydraulic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a study on the durability of different types of stabilised and unstabilised rammed earth walls. These rammed earth walls were constructed and exposed for 20 years to natural weathering, in a wet continental climate. None of these walls have shown complete collapse to date. A method to measure the rammed earth walls erosion by stereo-photogrammetry has been developed. The result shows that the mean erosion depth of the studied walls is about 2 mm (0.5% wall thickness) in the case of rammed earth wall stabilised with 5% by dry weight of hydraulic lime and about 6.4 mm (1.6% wall thickness) in the case of unstabilised rammed earth walls. The stabilisation enables to not use any plaster to protect the walls. In the case of the unstabilised rammed earth walls, an extrapolated lifetime longer than 60 years can be assessed. This shows a potential for the use of unstabilised rammed earth in the similar climatic conditions with this study. The method of stereo-photogrammetry used to measure the erosion of rammed earth walls on site may also help to calibrate and develop more pertinent laboratory test to assess the durability of rammed earth wall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Three-Georges Dam holds many records in the history of engineering. While the dam has produced benefits in terms of flood control, hydropower generation and increased navigation capacity of the Yangtze River, serious questions have been raised concerning its impact on both upstream and downstream ecosystems. It has been suggested that the dam operation intensifies the extremes of wet and dry conditions in the downstream Poyang Lake, and affects adversely important local wetlands. A floodgate has been proposed to maintain the lake water level by controlling the flow between the Poyang Lake and Yangtze River. Using extensive hydrological data and generalized linear statistical models, we demonstrated that the dam operation induces major changes in the downstream river discharge near the dam, including an average "water loss". The analysis also revealed considerable effects on the Poyang Lake water level, particularly a reduced level over the dry period from late summer to autumn. However, the dam impact needs to be further assessed based on long-term monitoring of the lake ecosystem, covering a wide range of parameters related to hydrological and hydraulic characteristics of the lake, water quality, geomorphological characteristics, aquatic biota and their habitat, wetland vegetation and associated fauna.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A desalination system is a complex multi energy domain system comprising power/energy flow across several domains such as electrical, thermal, and hydraulic. The dynamic modeling of a desalination system that comprehensively addresses all these multi energy domains is not adequately addressed in the literature. This paper proposes to address the issue of modeling the various energy domains for the case of a single stage flash evaporation desalination system. This paper presents a detailed bond graph modeling of a desalination unit with seamless integration of the power flow across electrical, thermal, and hydraulic domains. The paper further proposes a performance index function that leads to the tracking of the optimal chamber pressure giving the optimal flow rate for a given unit of energy expended. The model has been validated in steady state conditions by simulation and experimentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is presented for identification of parameters in unconfined aquifers from pumping tests, based on the optimisation of the objective function using the least squares approach. Four parameters are to be evaluated, namely: The hydraulic conductivity in the radial and the vertical directions, the storage coefficient and the specific yield. The sensitivity analysis technique is used for solving the optimisation problem. Besides eliminating the subjectivity involved in the graphical procedure, the method takes into account the field data at all time intervals without classifying them into small and large time intervals and does not use the approximation that the ratio of the storage coefficient to the specific yield tends to zero. Two illustrative examples are presented and it is found that the parameter estimates from the computational and graphical procedures differ fairly significantly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project was an initiation to investigate slaking induced properties detrition of spoil pile materials with overburden pressure and time. The changes in the material properties over time are important parameters that control the behaviour and performance of the piles. The time dependent mechanical and hydraulic properties reported together with mineralogical changes. One chamber designed to apply slaking in the laboratory and geotechnical investigation conducted to fulfil the objective of this project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Field trials and laboratory bioassays were undertaken to compare the performance and efficacy (mortality of diamondback moth larvae) of insecticides applied to cabbages with three high volume hydraulic knapsack sprayers (NS-16, PB-20 and Selecta 12V) and a controlled droplet application (CDA) sprayer. In field experiments, the high volume knapsack sprayers (application rate 500-600 L ha-') provided better spray coverage on the upper and lower surfaces of inner leaves, the upper surfaces of middle and outer leaves, and greater biological efficacy than the CDA sprayer (application rate 20~40 L ha-'). The PB-20 provided better spray coverage on the upper surface of middle leaves and both Surfaces of outer leaves when compared with the Selecta I2V. However, its biological efficacy in the field was not significantly different from that of the other high volume sprayers. Increasing the application rate from 20 to 40 L ha - ' for the CDA sprayer significantly increased droplet density but had no impact on test insect mortality. Laboratory evaluations of biological efficacy yielded higher estimates than field evaluations and there was no significant difference between the performance of the PB-20 and the CDA sprayer. Significant positive relationships were detected between insect mortality and droplet density deposited for both the PB-20 and the CDA sprayers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Groundwater tables are rising beneath irrigated fields in some areas of the Lower Burdekin in North Queensland, Australia. The soils where this occurs are predominantly sodic clay soils with low hydraulic conductivities. Many of these soils have been treated by applying gypsum or by increasing the salinity of irrigation water by mixing saline groundwater with fresh river water. While the purpose of these treatments is to increase infiltration into the surface soils and improve productivity of the root zone, it is thought that the treatments may have altered the soil hydraulic properties well below the root zone leading to increased groundwater recharge and rising water tables. In this paper we discuss the use of column experiments and HYDRUS modelling, with major ion reaction and transport and soil water chemistry-dependent hydraulic conductivity, to assess the likely depth, magnitude and timing of the impacts of surface soil amelioration on soil hydraulic properties below the root zone and hence groundwater recharge. In the experiments, columns of sodic clays from the Lower Burdekin were leached for extended periods of time with either gypsum solutions or mixed cation salt solutions and change s in hydraulic conductivity were measured. Leaching with a gypsum solution for an extended time period, until the flow rate stabilised, resulted in an approximately twenty fold increase in the hydraulic conductivity when compared with a low salinity, mixed cation solution. HYDRUS modelling was used to high light the role of those factors which might influence the impacts of soil treatment, particularly at depth, including the large amounts of rain during the relatively short wet season and the presence of thick low permeability clay layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of the hydrological regime on temporal changes to physical characteristics of substratum habitat, sediment texture of surface sediments (<10 cm), were investigated in a sub-tropical headwater stream over four years. Surface discharge was measured together with vertical hydraulic gradient and groundwater depth in order to explore features of sediment habitat that extend beyond the streambed surface. Whilst the typical discharge pattern was one of intermittent base flows and infrequent flow events associated with monsoonal rain patterns, the study period also encompassed a drought and a one-in-a-hundred-year flood. Rainfall and discharge did not necessarily reflect the actual conditions in the stream. Although surface waters were persistent long after discharge ceased, the streambed was completely dry on several occasions. Shallow groundwater was present at variable depths throughout the study period, being absent only at the height of the drought. The streambed sediments were mainly gravels, sand and clay. Finer sediment fractions showed a marked change in grain size over time, although bedload movement was limited to a single high discharge event. In response to a low discharge regimen (drought), sediments characteristically showed non-normal distributions and were dominated by finer materials. A high-energy discharge event produced a coarsening of sands and a diminished clay fraction in the streambed. Particulate organic matter from sediments showed trends of build-up and decline with the high and low discharge regimes, respectively. Within the surface sediment intersticies three potential categories of invertebrate habitat were recognised, each with dynamic spatial and temporal boundaries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adoption of conservation tillage practices on Red Ferrosol soils in the inland Burnett area of south-east Queensland has been shown to reduce runoff and subsequent soil erosion. However, improved infiltration resulting from these measures has not improved crop performance and there are suggestions of increased loss of soil water via deep drainage. This paper reports data monitoring soil water under real and artificial rainfall events in commercial fields and long-term tillage experiments, and uses the data to explore the rate and mechanisms of deep drainage in this soil type. Soils were characterised by large drainable porosities (≥0.10 m3/m3) in all parts of the profile to depths of 1.50 m, with drainable porosity similar to available water content (AWC) at 0.25 and 0.75 m, but >60% higher than AWC at 1.50 m. Hydraulic conductivity immediately below the tilled layer in both continuously cropped soils and those after a ley pasture phase was shown to decline with increasing soil moisture content, although the rate of decline was much greater in continuously cropped soil. At moisture contents approaching the drained upper limit (pore water pressure = -100cm H2O), estimates of saturated hydraulic conductivity after a ley pasture were 3-5 times greater than in continuously cropped soil, suggesting much greater rates of deep drainage in the former when soils are moist. Hydraulic tensiometers and fringe capacitance sensors monitored during real and artificial rainfall events showed evidence of soils approaching saturation in the surface layers (top 0.30-0.40 m), but there was no evidence of soil moistures exceeding the drained upper limit (i.e. pore water pressures ≤ -100 cm H2O) in deeper layers. Recovery of applied soil water within the top 1.00-1.20 m of the profile during or immediately after rainfall events declined as the starting profile moisture content increased. These effects were consistent with very rapid rates of internal drainage. Sensors deeper in the profile were unable to detect this drainage due to either non-uniformity of conducting macropores (i.e. bypass flow) or unsaturated conductivities in deeper layers that far exceed the saturated hydraulic conductivity of the infiltration throttle at the bottom of the cultivated layer. Large increases in unsaturated hydraulic conductivities are likely with only small increases in water content above the drained upper limit. Further studies with drainage lysimeters and large banks of hydraulic tensiometers are planned to quantify drainage risk in these soil types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new binary law of velocity distribution has been developed to describe the velocity profile for the entire flow region. The law is a combination of logarithmic law, valid in the wall (inner) region, and parabolic law, valid in the core (outer) region of the flow. The validity of the law has been established based on earlier data on flat plates, rough and smooth pipes and experimental data obtained from rigid-walled open channels with plane sand beds. A procedure of estimating bed shear stress from the proposed law of velocity distribution using the measured velocity profile has been evolved. Bed shear estimates made according to this procedure are in agreement with the values obtained from uniform flow analysis in the case of open channel flow over a sediment bed. The proposed method of estimating the bed shear stress from the observed velocity profiles is found to be particularly useful in cases where it is difficult to determine precisely the true bed level, such as in the case of flow over sediment beds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The critical stream power criterion may be used to describe the incipient motion of cohesionless particles of plane sediment beds. The governing equation relating ``critical stream power'' to ``shear Reynolds number'' is developed by using the present experimental data as well as the data from several other sources. Simultaneously, a resistance equation, relating the ``particle Reynolds number'' to the``shear Reynolds number'' is developed for plane sediment beds in wide channels with little or no transport. By making use of these relations, a procedure is developed to design plane sediment beds such that any two of the four design variables, including particle size, energy/friction slope, flow depth, and discharge per unit width in the channel should be known to predict the remaining two variables. Finally, a straightforward design procedure using design tables/design curves and analytical methods is presented to solve six possible design problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction and Objectives Joint moments and joint powers during gait are widely used to determine the effects of rehabilitation programs as well as prosthetic fitting. Following the definition of power (dot product of joint moment and joint angular velocity) it has been previously proposed to analyse the 3D angle between both vectors, αMw. Basically, joint power is maximised when both vectors are parallel and cancelled when both vectors are orthogonal. In other words, αMw < 60° reveals a propulsion configuration (more than 50% of the moment contribute to positive power) while αMw > 120° reveals a resistance configuration (more than 50% of the moment contribute to negative power). A stabilisation configuration (less than 50% of the moment contribute to power) corresponds to 60° < αMw < 120°. Previous studies demonstrated that hip joints of able-bodied adults (AB) are mainly in a stabilisation configuration (αMw about 90°) during the stance phase of gait. [1, 2] Individuals with transfemoral amputation (TFA) need to maximise joint power at the hip while controlling the prosthetic knee during stance. Therefore, we tested the hypothesis that TFAs should adopt a strategy that is different from a continuous stabilisation. The objective of this study was to compute joint power and αMw for TFA and to compare them with AB. Methods Three trials of walking at self-selected speed were analysed for 8 TFAs (7 males and 1 female, 46±10 years old, 1.78±0.08 m 82±13 kg) and 8 ABs (males, 25±3 years old, 1.75±0.04, m 67±6 kg). The joint moments are computed from a motion analysis system (Qualisys, Goteborg, Sweden) and a multi-axial transducer (JR3, Woodland, USA) mounted above the prosthetic knee for TFAs and from a motion analysis system (Motion Analysis, Santa Rosa, USA) and force plates (Bertec, Columbus, USA) for ABs. The TFAs were fitted with an OPRA (Integrum, AB, Gothengurg, Sweden) osseointegrated implant system and their prosthetic designs include pneumatic, hydraulic and microprocessor knees. Previous studies showed that the inverse dynamics computed from the multi-axial transducer is the proper method considering the absorption at the foot and resistance at the knee. Results The peak of positive power at loading response (H1) was earlier and lower for TFA compared to AB. Although the joint power is lower, the 3D angle between joint moment and joint angular velocity, αMw, reveals an obvious propulsion configuration (mean αMw about 20°) for TFA compared to a stabilisation configuration (mean αMw about 70°) for AB. The peaks of negative power at midstance (H2) and of positive power at preswing / initial swing (H3) occurred later, lower and longer for TFA compared to AB. Again, the joint powers are lower for TFA but, in this case, αMw is almost comparable (with a time lag), demonstrating a stabilisation (almost a resistance for TFA, mean αMw about 120°) and a propulsion configuration, respectively. The swing phase is not analysed in the present study. Conclusion The analysis of hip joint power may indicate that TFAs demonstrated less propulsion and resistance than ABs during the stance phase of gait. This is true from a quantitative point of view. On the contrary, the 3D angle between joint moment and joint angular velocity, αMw, reveals that TFAs have a remarkable propulsion strategy at loading response and almost a resistance strategy at midstance while ABs adopted a stabilisation strategy. The propulsion configuration, with αMw close to 0°, seems to aim at maximising the positive joint power. The configuration close to resistance, with αMw far from 180°, might aim at unlocking the prosthetic knee before swing while minimising the negative power. This analysis of both joint power and 3D angle between the joint moment and the joint angular velocity provides complementary insights into the gait strategies of TFA that can be used to support evidence-based rehabilitation and fitting of prosthetic components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research on the physiological response of crop plants to drying soils and subsequent water stress has grouped plant behaviours as isohydric and anisohydric. Drying soil conditions, and hence declining soil and root water potentials, cause chemical signals—the most studied being abscisic acid (ABA)—and hydraulic signals to be transmitted to the leaf via xylem pathways. Researchers have attempted to allocate crops as isohydric or anisohydric. However, different cultivars within crops, and even the same cultivars grown in different environments/climates, can exhibit both response types. Nevertheless, understanding which behaviours predominate in which crops and circumstances may be beneficial. This paper describes different physiological water stress responses, attempts to classify vegetable crops according to reported water stress responses, and also discusses implications for irrigation decision-making.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In aquatic systems, in-stream structures such as dams, weirs and road crossings can act as barriers to fish movement along waterways. There is a growing array of technological fish-pass solutions for the movement of fish across large structures such as weirs and dams. However, most existing weir structures lack dedicated fishways, and fish often have to rely on drowned conditions to move upstream. In order to assess the adequacy of a given or proposed weir for upstream fish passage under drowned conditions, it is necessary to determine, firstly, the hydraulic properties of the drowned weir with respect to the requirements of the fish community and, secondly, the duration and timing of drowning flows with respect to the hydrograph for the site and the likely timing of fish movements. This paper primarily addresses the first issue. A computer program has been developed and incorporated in a simple-to-operate spreadsheet for the determination of the hydraulic characteristics of a drowned weir which are important to fish movement. The program is based on a theoretical analysis of drowned weirs and subsequent extensive verification in laboratory experiments. Inputs to the program include site information comprising channel cross-section data, channel slope, and channel roughness, and weir information comprising weir height and the required minimum drowned depth over the weir for migrating fish passage. The program then calculates the flow rate at which the required level of drowning occurs, the velocity characteristics above the weir (including transverse distributions), and flow depths and velocities upstream and downstream of the weir. The paper discusses (briefly) the theoretical background of the program and its experimental verification. A case study is then presented that illustrates the use of the program in the field to assess fish passage opportunities at an existing weir and to develop a case for retrofitting a fishway. Some discussion is also provided on the contribution of a modelled drownout volume to the assessment of how significant a barrier a weir is to fish passage. It is shown that the program is an important new additional tool in the assessment of the adequacy of weir structures in providing for fish movement and informing associated fish passage solutions. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a bench scale forward osmosis (FO) process was operated using two commonly available FO membranes in different orientations in order to examine the removal of foulants in the coal seam gas (CSG) associated water, the water flux and fouling behaviours of the process were also investigated. After 48 h of fouling simulation experiment, the water flux declined by approximately 55 and 35% of its initial level in the TFC-PRO and CTA-PRO modes (support layer facing the feed), respectively, while the flux decline in the TFC-FO and CTA-FO modes (active layer facing the feed) was insignificant. The flux decline in PRO modes was caused by the compounding effects of internal concentration polarisation and membrane fouling. However, the declined flux was completely recovered to its initial level following the hydraulic cleaning using deionised water. Dissolved organic carbon (DOC), adenosine tri-phosphate (ATP) and major inorganic scalants (Ca, Mg and silica) in the CSG feed were effectively removed by using the FO process. The results of this study suggest that the FO process shows promising potential to be employed as an effective pre-treatment for membrane purification of CSG associated water.