919 resultados para Human training
Resumo:
Background and Purpose: Several different methods of teaching laparoscopic skills have been advocated, with virtual reality surgical simulation (VRSS) being the most popular. Its effectiveness in improving surgical performance is not a consensus yet, however. The purpose of this study was to determine whether practicing surgical skills in a virtual reality simulator results in improved surgical performance. Materials and Methods: Fifteen medical students recruited for the study were divided into three groups. Group I (control) did not receive any VRSS training. For 10 weeks, group II trained basic laparoscopic skills (camera handling, cutting skill, peg transfer skill, and clipping skill) in a VRSS laparoscopic skills simulator. Group III practiced the same skills and, in addition, performed a simulated cholecystectomy. All students then performed a cholecystectomy in a swine model. Their performance was reviewed by two experienced surgeons. The following parameters were evaluated: Gallbladder pedicle dissection time, clipping time, time for cutting the pedicle, gallbladder removal time, total procedure time, and blood loss. Results: With practice, there was improvement in most of the evaluated parameters by each of the individuals. There were no statistical differences in any of evaluated parameters between those who did and did not undergo VRSS training, however. Conclusion: VRSS training is assumed to be an effective tool for learning and practicing laparoscopic skills. In this study, we could not demonstrate that VRSS training resulted in improved surgical performance. It may be useful, however, in familiarizing surgeons with laparoscopic surgery. More effective methods of teaching laparoscopic skills should be evaluated to help in improving surgical performance.
Resumo:
Background: The beneficial actions of exercise training on lipid, glucose and energy metabolism and insulin sensitivity appear to be in part mediated by PGC-1 alpha. Previous studies have shown that spontaneously exercised rats show at rest enhanced responsiveness to exogenous insulin, lower plasma insulin levels and increased skeletal muscle insulin sensitivity. This study was initiated to examine the functional interaction between exercise-induced modulation of skeletal muscle and liver PGC-1 alpha protein expression, whole body insulin sensitivity, and circulating FFA levels as a measure of whole body fatty acid (lipid) metabolism. Methods: Two groups of male Wistar rats (2 Mo of age, 188.82 +/- 2.77 g BW) were used in this study. One group consisted of control rats placed in standard laboratory cages. Exercising rats were housed individually in cages equipped with running wheels and allowed to run at their own pace for 5 weeks. At the end of exercise training, insulin sensitivity was evaluated by comparing steady-state plasma glucose (SSPG) concentrations at constant plasma insulin levels attained during the continuous infusion of glucose and insulin to each experimental group. Subsequently, soleus and plantaris muscle and liver samples were collected and quantified for PGC-1 alpha protein expression by Western blotting. Collected blood samples were analyzed for glucose, insulin and FFA concentrations. Results: Rats housed in the exercise wheel cages demonstrated almost linear increases in running activity with advancing time reaching to maximum value around 4 weeks. On an average, the rats ran a mean (Mean +/- SE) of 4.102 +/- 0.747 km/day and consumed significantly more food as compared to sedentary controls (P < 0.001) in order to meet their increased caloric requirement. Mean plasma insulin (P < 0.001) and FFA (P < 0.006) concentrations were lower in the exercise-trained rats as compared to sedentary controls. Mean steady state plasma insulin (SSPI) and glucose (SSPG) concentrations were not significantly different in sedentary control rats as compared to exercise-trained animals. Plantaris PGC-1 alpha protein expression increased significantly from a 1.11 +/- 0.12 in the sedentary rats to 1.74 +/- 0.09 in exercising rats (P < 0.001). However, exercise had no effect on PGC-1 alpha protein content in either soleus muscle or liver tissue. These results indicate that exercise training selectively up regulates the PGC-1 alpha protein expression in high-oxidative fast skeletal muscle type such as plantaris muscle. Conclusion: These data suggest that PGC-1 alpha most likely plays a restricted role in exercise-mediated improvements in insulin resistance (sensitivity) and lowering of circulating FFA levels.
Resumo:
Background: Treatment of multinodular goiters (MNGs) is highly controversial. Radioiodine (RAI) therapy is a nonsurgical alternative for the elderly who decline surgery. Recently, recombinant human thyrotropin (rhTSH) has been used to augment RAI uptake and distribution. In this study, we determined the outcome of 30 mCi RAI preceded by rhTSH (0.1 mg) in euthyroid (EU) and hyperthyroid (subclinical/clinical) patients with large MNGs. Methods: This was a prospective cohort study. Forty-two patients (age, 43-80 years) with MNGs were treated with 30 mCi RAI after stimulation with 0.1 mg of rhTSH. Patients were divided into three groups, according to thyroid function: EU (n = 18), subclinically hyperthyroid (SC-H, n = 18), and clinically hyperthyroid (C-H, n = 6). All patients underwent a 90-day low-iodine diet before treatment, and those with clinical hyperthyroidism received methimazole 10 mg daily for 30 days. Serum TSH, free thyroxine (FT4), total triiodothyronine (TT3), and thyroglobulin were measured at baseline and at 24, 48, 72, 168 hours, and 1, 3, 6, 9, 12, 18, 24, and 36 months after therapy. Thyroid volume was assessed by computed tomography at baseline and every 6 months. Results: Patients had high iodine urinary excretion (308 +/- 108 mu g I/L) at baseline. TSH levels at baseline were within the normal range (1.5 +/- 0.7 mu U/mL) in the EU group and suppressed (< 0.3 mu U/mL) in the SC-H and C-H groups. After rhTSH, serum TSH peaked at 24 hours reaching 12.4 +/- 5.85 mu U/mL. After RAI administration, patients in both hyperthyroid groups had a higher increase in FT4 and TT3 compared with those in the EU group (p < 0.001). Thyroglobulin levels increased equally in all three groups until day 7. Thyroid volume decreased significantly in all patients. Side effects were more common in the SC-H and C-H groups (31.4% and 60.4%, respectively) compared with EU patients (17.8%). Permanent hypothyroidism was more prevalent in the EU group (50%) compared with the SC-H (11%) and C-H (16.6%) groups. Conclusions: Patients with MNG may have subclinical and clinical nonautoimmune iodine-induced hyperthyroidism. Despite a low-iodine diet and therapy with methimazole, hyperthyroid patients have a significantly higher increase in FT4 and TT3 levels after RAI ablation. This can lead to important side effects related mostly to the cardiac system. We strongly advise that patients with SC-H and C-H be adequately treated with methimazole and low-iodine diet aiming to normalize their hyperthyroid condition before rhTSH-stimulated treatment with RAI.
Resumo:
The action of the parasympathetic nerves on the heart is made through a group of neurons located on the surface of the atria. This study evaluated the effect of a chronic training protocol on the number and sizes of the cardiac neurons of Wistar rats. Whole mount preparations of the atria of 12-month old male sedentary and trained rats (40 weeks of running on a treadmill 3 times a week, 16 m/min) were assessed for number and size (maximal cellular profile area) of the cardiac neurons. The cardiac neurons were ascertained by using the NADH-diaphorase technique that stains the cell bodies of the neurons in dark blue. The, number of cardiac neurons in the trained rats (P>0.05) did not change significantly. In the sedentary group there were small, medium sized and large neurons. However there was a notable increase in the percentage of small neurons in the rats submitted to the training compared to the sedentary group (P<0.05). Previous studies have shown that electrophysiologically, the small neurons are more easily excitable than the large neurons. It is possible that the results of the present work reflect an adaptation mechanism of the cardiac neurons presumably with the objective of increasing the excitability of the neurons for the vagal action and resulting facilitation of the sinusal bradycardia observed at rest and in the exercise. We concluded that the training affects significantly the size of the cardiac neurons in Wistar rats. (Biol.Sport 26.245-254, 2009)
Resumo:
Background: CD4(+)CD25(high) regulatory T (T(Reg)) cells modulate antigen-specific T cell responses, and can suppress anti-viral immunity. In HTLV-1 infection, a selective decrease in the function of T(Reg) cell mediated HTLV-1-tax inhibition of FOXP3 expression has been described. The purpose of this study was to assess the frequency and phenotype of T(Reg) cells in HTLV-1 asymptomatic carriers and in HTLV-1-associated neurological disease (HAM/TSP) patients, and to correlate with measures of T cell activation. Results: We were able to confirm that HTLV-1 drives activation, spontaneous IFN gamma production, and proliferation of CD4+ T cells. We also observed a significantly lower proportion of CTLA-4(+) T(Reg) cells (CD4(+)CD25(high) T cells) in subjects with HAM/TSP patients compared to healthy controls. Ki-67 expression was negatively correlated to the frequency of CTLA-4(+) T(Reg) cells in HAM/TSP only, although Ki-67 expression was inversely correlated with the percentage of CD127(low) T(Reg) cells in healthy control subjects. Finally, the proportion of CD127(low) T(Reg) cells correlated inversely with HTLV-1 proviral load. Conclusion: Taken together, the results suggest that T(Reg) cells may be subverted in HAM/TSP patients, which could explain the marked cellular activation, spontaneous cytokine production, and proliferation of CD4(+) T cells, in particular those expressing the CD25(high)CD127(low) phenotype. T(Reg) cells represent a potential target for therapeutic intervention for patients with HTLV-1-related neurological diseases.
Resumo:
The objective of this study was to compare the impact on knowledge and counseling skills of face-to-face and Internet-based oral health training programs on medical students. Participants consisted of 148 (82 percent) of the 180 invited students attending their fifth academic year at the Faculty of Medicine, University of Sao Paulo, Brasil, in 2007. The interventions took place during a three-month training period in the clinical Center for Health Promotion, which comprised part of a clerkship in Internal Medicine. The students were divided into four groups: 1) Control Group (Control), with basic intervention; 2) Brochure Group (Br), with basic intervention plus complete brochure with oral health themes; 3) Cybertutor Group (Cy), with basic intervention plus access to an Internet-based training program about oral health themes; and 4) Cybertutor + Contact Group (Cy+C), the same as Cy plus brief proactive contact with a tutor. The impact of these interventions on student knowledge was measured with pre- and post assessments, and student skills in asking and counseling about oral health were assessed with an objective structured clinical examination (OSCE). Multivariate logistic regression models were applied to identify the odds ratios of scoring above Control's medians on the final assessment and the OSCE. In the results, Cy+C performed significantly better than Control on both the final assessment (OR 9.4; 95% CI 2.7-32.8) and the OSCE (OR 5.6; 95% CI 1.9-16.3) and outperformed all the other groups. The Cy+C group showed the most significant increase in knowledge and the best skills in asking and counseling about oral health.
Resumo:
Highly active antiretroviral therapy (HAART) has dramatically decreased opportunistic infections (OIs) in human immunodeficiency virus (HIV)-infected patients. However, gastrointestinal disease continues to account for a high proportion of presenting symptoms in these patients. Gastrointestinal symptoms in treated patients who respond to therapy are more likely to the result of drug-induced complications than OI. Endoscopi evaluation of the gastrointestinal tract remains a cornerstone of diagnosis, especially in patients with advanced immunodeficiency, who are at risk for OI. The peripheral blood CD4 lymphocyte count helps to predict the risk of an OI, with the highest risk seen in HIV-infected patients with low CD4 count (< 200 cells/mm(3)). This review provides an update of the role of endoscopy in diagnosing OI in the upper gastrointestinal tract in HIV-infected patients in the era of HAART. (C) 2009 The WJG Press and Baishideng. All rights reserved.
Resumo:
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the etiologic agent of all forms of Kaposi's sarcoma, primary effusion lymphoma and the plasmablastic cell variant of multicentric Castleman disease. In endemic areas of sub-Saharan Africa, blood transfusions have been associated with a substantial risk of HHV-8 transmission. By contrast, several studies among healthy blood donors from North America have failed to detect HHV-8 DNA in samples of seropositive individuals. In this study, using a real-time PCR assay, we investigated the presence of HHV-8 DNA in whole-blood samples of 803 HHV-8 blood donors from three Brazilian states (Sao Paulo, Amazon, Bahia) who tested positive for HHV-8 antibodies, in a previous multicenter study. HHV-8 DNA was not detected in any sample. Our findings do not support the introduction of routine HHV-8 screening among healthy blood donors in Brazil. (WC = 140).
Resumo:
To determine the epidemiology of human herpesvirus type 8 (HHV-8) among non-Amazonian native populations, we conducted a cross-sectional study in Brazil, Bolivia, and Paraguay. Our data show striking ethnic and geographic variations in the distribution of HHV-8 seroprevalences in Amazonian (77%) and non-Amazonian native populations (range 0%-83%).
Resumo:
The presence of stem cell characteristics in glioma cells raises the possibility that mechanisms promoting the maintenance and self-renewal of tissue specific stem cells have a similar function in tumor cells. Here we characterized human gliomas of various malignancy grades for the expression of stem cell regulatory proteins. We show that cells in high grade glioma co-express an array of markers defining neural stem cells (NSCs) and that these proteins can fulfill similar functions in tumor cells as in NSCs. However, in contrast to NSCs glioma cells co-express neural proteins together with pluripotent stem cell markers, including the transcription factors Oct4, Sox2, Nanog and Klf4. In line with this finding, in high grade gliomas mesodermal-and endodermal-specific transcription factors were detected together with neural proteins, a combination of lineage markers not normally present in the central nervous system. Persistent presence of pluripotent stem cell traits could only be detected in solid tumors, and observations based on in vitro studies and xenograft transplantations in mice imply that this presence is dependent on the combined activity of intrinsic and extrinsic regulatory cues. Together these results demonstrate a general deregulated expression of neural and pluripotent stem cell traits in malignant human gliomas, and indicate that stem cell regulatory factors may provide significant targets for therapeutic strategies.
Resumo:
Background: Medical education and training can contribute to the development of depressive symptoms that might lead to possible academic and professional consequences. We aimed to investigate the characteristics of depressive symptoms among 481 medical students (79.8% of the total who matriculated). Methods: The Beck Depression Inventory (BDI) and cluster analyses were used in order to better describe the characteristics of depressive symptoms. Medical education and training in Brazil is divided into basic (1(st) and 2(nd) years), intermediate (3(rd) and 4(th) years), and internship (5(th) and 6(th) years) periods. The study organized each item from the BDI into the following three clusters: affective, cognitive, and somatic. Statistical analyses were performed using analysis of variance (ANOVA) with post-hoc Tukey corrected for multiple comparisons. Results: There were 184 (38.2%) students with depressive symptoms (BDI > 9). The internship period resulted in the highest BDI scores in comparison to both the basic (p < .001) and intermediate (p < .001) periods. Affective, cognitive, and somatic clusters were significantly higher in the internship period. An exploratory analysis of possible risk factors showed that females (p = .020) not having a parent who practiced medicine (p = .016), and the internship period (p = .001) were factors for the development of depressive symptoms. Conclusion: There is a high prevalence towards depressive symptoms among medical students, particularly females, in the internship level, mainly involving the somatic and affective clusters, and not having a parent who practiced medicine. The active assessment of these students in evaluating their depressive symptoms is important in order to prevent the development of co-morbidities and suicide risk.
Resumo:
Objectives: The aim of this work was to verify the differentiation between normal and pathological human carotid artery tissues by using fluorescence and reflectance spectroscopy in the 400- to 700-nm range and the spectral characterization by means of principal components analysis. Background Data: Atherosclerosis is the most common and serious pathology of the cardiovascular system. Principal components represent the main spectral characteristics that occur within the spectral data and could be used for tissue classification. Materials and Methods: Sixty postmortem carotid artery fragments (26 non-atherosclerotic and 34 atherosclerotic with non-calcified plaques) were studied. The excitation radiation consisted of a 488-nm argon laser. Two 600-mu m core optical fibers were used, one for excitation and one to collect the fluorescence radiation from the samples. The reflectance system was composed of a halogen lamp coupled to an excitation fiber positioned in one of the ports of an integrating sphere that delivered 5 mW to the sample. The photo-reflectance signal was coupled to a 1/4-m spectrograph via an optical fiber. Euclidean distance was then used to classify each principal component score into one of two classes, normal and atherosclerotic tissue, for both fluorescence and reflectance. Results: The principal components analysis allowed classification of the samples with 81% sensitivity and 88% specificity for fluorescence, and 81% sensitivity and 91% specificity for reflectance. Conclusions: Our results showed that principal components analysis could be applied to differentiate between normal and atherosclerotic tissue with high sensitivity and specificity.
Resumo:
Background: It has been well documented over past decades that interaction of pathogens with the extracellular matrix (ECM) plays a primary role in host cell attachment and invasion. Adherence to host tissues is mediated by surface-exposed proteins expressed by the microorganisms during infection. The mechanisms by which pathogenic leptospires invade and colonize the host remain poorly understood since few virulence factors contributing to the pathogenesis of the disease have been identified. Whole-genome sequencing analysis of L. interrogans allowed identification of a repertoire of putative leptospiral surface proteins. Results: Here, we report the identification and characterization of a new leptospiral protein that exhibits extracellular matrix-binding properties, called as Lsa21 (leptospiral surface adhesin, 21 kDa). Compatible with its role in adhesion, the protein was shown to be surface-exposed by indirect immunofluorescence. Attachment of Lsa21 to laminin, collagen IV, and plasma fibronectin was specific and dose dependent. Laminin oxidation by sodium metaperiodate reduced the protein-laminin interaction in a concentration-dependent manner, indicating that laminin sugar moieties are crucial for this interaction. The gene coding for Lsa21 is present in pathogenic strains belonging to the L. interrogans species but was not found in the saprophytic L. biflexa serovar Patoc strain Patoc 1. Loss of gene expression occurs upon culture attenuation of pathogenic strains. Environmental factors such as osmolarity and temperature affect Lsa21 expression at the transcriptional level. Moreover, anti-Lsa21 serum labeled liver and kidney tissues of human fatal cases of leptospirosis. Conclusion: Our data suggest a role of Lsa21 in the pathogenesis of leptospirosis.
Resumo:
It has been demonstrated that human adipose tissue-derived mesenchymal stem cells (hASCs) enhance vascular density in ischemic tissues, suggesting that they can differentiate into vascular cells or release angiogenic factors that may stimulate neoangiogenesis. Moreover, there is evidence that shear stress (SS) may activate proliferation and differentiation of embryonic and endothelial precursor stem cells into endothelial cells (ECs). In this work, we investigated the effect of laminar SS in promoting differentiation of hASCs into ECs. SS (10 dyn/cm(2) up to 96 h), produced by a cone plate system, failed to induce EC markers (CD31, vWF, Flk-1) on hASC assayed by RT-PCR and flow cytometry. In contrast, there was a cumulative production of nitric oxide (determined by Griess Reaction) and vascular endothelial growth factor (VEGF; by ELISA) up to 96 h of SS stimulation ( NO(2)(-) in nmol/10(4) cells: static: 0.20 +/- 0.03; SS: 1.78 +/- 0.38, n = 6; VEGF in pg/10(4) cells: static: 191.31 +/- v35.29; SS: 372.80 +/- 46.74, n = 6, P < 0.05). Interestingly, the VEGF production was abrogated by 5 mM N(G)-L-nitro-arginine methyl ester (L-NAME) treatment (VEGF in pg/10(4) cells: SS: 378.80 +/- 46.74, n = 6; SS + L-NAME: 205.84 +/- 91.66, n = 4, P < 0.05). The results indicate that even though SS failed to induce EC surface markers in hASC under the tested conditions, it stimulated NO-dependent VEGF production.
Resumo:
Monocarboxylate transporters (MCTs) are important cellular pH regulators in cancer cells; however, the value of MCT expression in cancer is still poorly understood. In the present study, we analysed MCT1, MCT2, and MCT4 protein expression in breast, colon, lung, and ovary neoplasms, as well as CD147 and CD44. MCT expression frequency was high and heterogeneous among the different tumours. Comparing with normal tissues, there was an increase in MCT1 and MCT4 expressions in breast carcinoma and a decrease in MCT4 plasma membrane expression in lung cancer. There were associations between CD147 and MCT1 expressions in ovarian cancer as well as between CD147 and MCT4 in both breast and lung cancers. CD44 was only associated with MCT1 plasma membrane expression in lung cancer. An important number of MCT1 positive cases are negative for both chaperones, suggesting that MCT plasma membrane expression in tumours may depend on a yet nonidentified regulatory protein.