986 resultados para Human Leukocytes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Cervical cancer and infection with human immunodeficiency virus (HIV) are both important public health problems in South Africa (SA). The aim of this study was to determine the prevalence of cervical squamous intraepithelial lesions (SILs), high-risk human papillomavirus (HR-HPV), HPV viral load and HPV genotypes in HIV positive women initiating anti-retroviral (ARV) therapy. Methods A cross-sectional survey was conducted at an anti-retroviral (ARV) treatment clinic in Cape Town, SA in 2007. Cervical specimens were taken for cytological analysis and HPV testing. The Digene Hybrid Capture 2 (HC2) test was used to detect HR-HPV. Relative light units (RLU) were used as a measure of HPV viral load. HPV types were determined using the Roche Linear Array HPV Genotyping test. Crude associations with abnormal cytology were tested and multiple logistic regression was used to determine independent risk factors for abnormal cytology. Results The median age of the 109 participants was 31 years, the median CD4 count was 125/mm3, 66.3% had an abnormal Pap smear, the HR-HPV prevalence was 78.9% (Digene), the median HPV viral load was 181.1 RLU (HC2 positive samples only) and 78.4% had multiple genotypes. Among women with abnormal smears the most prevalent HR-HPV types were HPV types 16, 58 and 51, all with a prevalence of 28.5%. On univariate analysis HR-HPV, multiple HPV types and HPV viral load were significantly associated with the presence of low and high-grade SILs (LSIL/HSIL). The multivariate logistic regression showed that HPV viral load was associated with an increased odds of LSIL/HSIL, odds ratio of 10.7 (95% CI 2.0 – 57.7) for those that were HC2 positive and had a viral load of ≤ 181.1 RLU (the median HPV viral load), and 33.8 (95% CI 6.4 – 178.9) for those that were HC2 positive with a HPV viral load > 181.1 RLU. Conclusion Women initiating ARVs have a high prevalence of abnormal Pap smears and HR-HPV. Our results underscore the need for locally relevant, rigorous screening protocols for the increasing numbers of women accessing ARV therapy so that the benefits of ARVs are not partially offset by an excess risk in cervical cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of vaccine strategies against human papillomavirus (HPV), which causes cervical cancer, is a priority. We investigated the use of virus-like particles (VLPs) of the most prevalent type, HPV-16, as carriers of foreign proteins. Green fluorescent protein (GFP) was fused to the N or C terminus of both L1 and L2, with L2 chimeras being co-expressed with native L1. Purified chimaeric VLPs were comparable in size (∼55 nm) to native HPV VLPs. Conformation-specific monoclonal antibodies (Mabs) bound to the VLPs, thereby indicating that they possibly retain their antigenicity. In addition, all of the VLPs encapsidated DNA in the range of 6-8 kb. © 2007 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research indicates that brief periods (60 minutes) of monocular defocus lead to small but significant changes in human axial length. However, the effects of longer periods of defocus on the axial length of human eyes are unknown. We examined the influence of a 12 hour period of monocular myopic defocus on the natural daily variations occurring in axial length and choroidal thickness of young adult emmetropes. A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained for 13 emmetropic young adults over three consecutive days. The natural daily rhythms (Day 1, baseline day, no defocus), the daily rhythms with monocular myopic defocus (Day 2, defocus day, +1.50 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, recovery day, no defocus) were all examined. Significant variations over the course of the day were observed in both axial length and choroidal thickness on each of the three measurement days (p<0.0001). The magnitude and timing of the daily variations in axial length and choroidal thickness were significantly altered with the monocular myopic defocus on day 2 (p<0.0001). Following the introduction of monocular myopic defocus, the daily peak in axial length occurred approximately 6 hours later, and the peak in choroidal thickness approximately 8.5 hours earlier in the day compared to days 1 and 3 (with no defocus). The mean amplitude (peak to trough) of change in axial length (0.030 ± 0.012 on day 1, 0.020 ± 0.010 on day 2 and 0.033 ± 0.012 mm on day 3) and choroidal thickness (0.030 ± 0.007 on day 1, 0.022 ± 0.006 on day 2 and 0.027 ± 0.009 mm on day 3) were also significantly different between the three days (both p<0.05). The introduction of monocular myopic defocus disrupts the daily variations in axial length and choroidal thickness of human eyes (in terms of both amplitude and timing) that return to normal the following day after removal of the defocus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indicators of mitochondrial function were studied in two different cell culture models of cis-diamminedichloroplatinum-II (CDDP) resistance: the intrinsically resistant human ovarian cancer cell line CI-80-13S, and resistant clones (HeLa-S1a and HeLa-S1b) generated by stable expression of the serine protease inhibitor—plasminogen activator inhibitor type-2 (PAI-2), in the human cervical cancer cell line HeLa. In both models, CDDP resistance was associated with sensitivity to killing by adriamycin, etoposide, auranofin, bis[1,2-bis(diphenylphosphino)ethane]gold(I) chloride {[Au(DPPE)2]Cl}, CdCl2 and the mitochondrial inhibitors rhodamine-123 (Rhl23), dequalinium chloride (DeCH), tetraphenylphosphonium (TPP), and ethidium bromide (EtBr) and with lower constitutive levels of ATP. Unlike the HeLa clones, CI-80-13S cells were additionally sensitive to chloramphenicol, 1-methyl-4-phenylpyridinium ion (MPP+), rotenone, thenoyltrifluoroacetone (TTFA), and antimycin A, and showed poor reduction of 1-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), suggesting a deficiency in NADH dehydrogenase and/or succinate dehydrogenase activities. Total platinum uptake and DNA-bound platinum were slightly lower in CI-80-13S than in sensitive cells. The HeLa-S1a and HeLa-S1b clones, on the other hand, showed poor reduction of triphenyltetrazolium chloride (TTC), indicative of low cytochrome c oxidase activity. Total platinum uptake by HeLa-S1a was similar to HeLa, but DNA-bound platinum was much lower than for the parent cell line. The mitochondria of CI-80-13S and HeLa-S1a showed altered morphology and were fewer in number than those of JAM and HeLa. In both models, CDDP resistance was associated with less platinum accumulation and with mitochondrial and membrane defects, brought about one case with expression of a protease inhibitor which is implicated in tumor progression. Such markers may identify tumors suitable for treatment with gold phosphine complexes or other mitochondrial inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Female genital mutilation (FGM) is a cultural practice involving the deliberate, non-therapeutic physical modification of young girls’ genitalia. FGM can take several forms, ranging from smaller incisions, to removal of the clitoris and labia, and narrowing or even closing of the vagina. FGM predates and has no basis in the Koran, or any other religious text. Rather, it is a cultural tradition, particularly common in Islamic societies in regions of Africa, motivated by a patriarchal society’s desire to control female bodies and lives. The primary reason for this desire for control is to ensure virginity at marriage, thereby preserving family honour, within a patriarchal social structure where females’ value as persons is intrinsically connected to, and limited to, their worth as virgin brides. Recent efforts at legal prohibition and practical eradication in a growing number of African nations mark a significant turning point in how societies treat females. This shift in cultural power has been catalysed by a concern for female health, but it has also been motivated by an impulse to promote the human rights of girls and women. Although FGM remains widely practiced and there is much progress yet to be made before its eradication, the rights-based approach which has grown in strength embodies a marked shift in cultural power which reflects progress in women’s and children’s rights in the Western world, but which is now being applied in a different cultural context. This chapter reviews the nature of FGM, its prevalence, and health consequences. It discusses recent legal, cultural and practical developments, especially in African nations. Finally, this chapter raises the possibility that an absolute human right against FGM may emerge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature was reviewed to assess the relationship between the lipid adjusted concentration in human serum and breast milk (expressed as the serum/milk ratio) of a broad range of POPs in paired samples. Thirteen studies were identified, including seven studies that reported serum/milk ratios for polychlorinated dibenzo-dioxins and -furans (PCDD/Fs), ten for polychlorinated biphenyls (PCBs), five for polybrominated diphenyl ethers (PBDEs), and five for organochlorine pesticides (OCPs). Mean serum/milk ratios ranged between 0.7 and 25 depending on the compound and congener. For PCDD/Fs, PCBs and PBDEs, a clear trend of increasing mean serum/milk ratio by increasing molar volume, hydrophobicity and number of halogen substitutes was observed. The mean serum/milk ratios reported by the 13 studies summarized here will aid comparison between human POPs exposure studies using either serum or milk samples. More studies are needed to allow a valid comparison between data obtained from analysis of breast milk and serum samples for a broader range of POPs. Furthermore such studies may shed light on compound specific factors as well as other determinants that may affect the partitioning and partition kinetics of POPs between serum and breast milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage defects are common after joint injuries. When left untreated, the biomechanical protective function of cartilage is gradually lost, making the joint more susceptible to further damage, causing progressive loss of joint function and eventually osteoarthritis (OA). In the process of translating promising tissue-engineering cartilage repair approaches from bench to bedside, pre-clinical animal models including mice, rabbits, goats, and horses, are widely used. The equine species is becoming an increasingly popular model for the in vivo evaluation of regenerative orthopaedic approaches. As there is also an increasing body of evidence suggesting that successful lasting tissue reconstruction requires an implant that mimics natural tissue organization, it is imperative that depth-dependent characteristics of equine osteochondral tissue are known, to assess to what extent they resemble those in humans. Therefore, osteochondral cores (4-8 mm) were obtained from the medial and lateral femoral condyles of equine and human donors. Cores were processed for histology and for biochemical quantification of DNA, glycosaminoglycan (GAG) and collagen content. Equine and human osteochondral tissues possess similar geometrical (thickness) and organizational (GAG, collagen and DNA distribution with depth) features. These comparable trends further underscore the validity of the equine model for the evaluation of regenerative approaches for articular cartilage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerative medicine-based approaches for the repair of damaged cartilage rely on the ability to propagate cells while promoting their chondrogenic potential. Thus, conditions for cell expansion should be optimized through careful environmental control. Appropriate oxygen tension and cell expansion substrates and controllable bioreactor systems are probably critical for expansion and subsequent tissue formation during chondrogenic differentiation. We therefore evaluated the effects of oxygen and microcarrier culture on the expansion and subsequent differentiation of human osteoarthritic chondrocytes. Freshly isolated chondrocytes were expanded on tissue culture plastic or CultiSpher-G microcarriers under hypoxic or normoxic conditions (5% or 20% oxygen partial pressure, respectively) followed by cell phenotype analysis with flow cytometry. Cells were redifferentiated in micromass pellet cultures over 4 weeks, under either hypoxia or normoxia. Chondrocytes cultured on tissue culture plastic proliferated faster, expressed higher levels of cell surface markers CD44 and CD105 and demonstrated stronger staining for proteoglycans and collagen type II in pellet cultures compared with microcarrier-cultivated cells. Pellet wet weight, glycosaminoglycan content and expression of chondrogenic genes were significantly increased in cells differentiated under hypoxia. Hypoxia-inducible factor-3alpha mRNA was up-regulated in these cultures in response to low oxygen tension. These data confirm the beneficial influence of reduced oxygen on ex vivo chondrogenesis. However, hypoxia during cell expansion and microcarrier bioreactor culture does not enhance intrinsic chondrogenic potential. Further improvements in cell culture conditions are therefore required before chondrocytes from osteoarthritic and aged patients can become a useful cell source for cartilage regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSC) are emerging as a leading cellular therapy for a number of diseases. However, for such treatments to become available as a routine therapeutic option, efficient and cost-effective means for industrial manufacture of MSC are required. At present, clinical grade MSC are manufactured through a process of manual cell culture in specialized cGMP facilities. This process is open, extremely labor intensive, costly, and impractical for anything more than a small number of patients. While it has been shown that MSC can be cultivated in stirred bioreactor systems using microcarriers, providing a route to process scale-up, the degree of numerical expansion achieved has generally been limited. Furthermore, little attention has been given to the issue of primary cell isolation from complex tissues such as placenta. In this article we describe the initial development of a closed process for bulk isolation of MSC from human placenta, and subsequent cultivation on microcarriers in scalable single-use bioreactor systems. Based on our initial data, we estimate that a single placenta may be sufficient to produce over 7,000 doses of therapeutic MSC using a large-scale process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ad[I/PPT-E1A] is an oncolytic adenovirus that specifically kills prostate cells via restricted replication by a prostate-specific regulatory element. Off-target replication of oncolytic adenoviruses would have serious clinical consequences. As a proposed ex vivo test, we describe the assessment of the specificity of Ad[I/PPT-E1A] viral cytotoxicity and replication in human nonprostate primary cells. Four primary nonprostate cell types were selected to mimic the effects of potential in vivo exposure to Ad[I/PPT-E1A] virus: bronchial epithelial cells, urothelial cells, vascular endothelial cells, and hepatocytes. Primary cells were analyzed for Ad[I/PPT-E1A] viral cytotoxicity in MTS assays, and viral replication was determined by hexon titer immunostaining assays to quantify viral hexon protein. The results revealed that at an extreme multiplicity of infection of 500, unlikely to be achieved in vivo, Ad[I/PPT-E1A] virus showed no significant cytotoxic effects in the nonprostate primary cell types apart from the hepatocytes. Transmission electron microscopy studies revealed high levels of Ad[I/PPT-E1A] sequestered in the cytoplasm of these cells. Adenoviral green fluorescent protein reporter studies showed no evidence for nuclear localization, suggesting that the cytotoxic effects of Ad[I/PPT-E1A] in human primary hepatocytes are related to viral sequestration. Also, hepatocytes had increased amounts of coxsackie adenovirus receptor surface protein. Active viral replication was only observed in the permissive primary prostate cells and LNCaP prostate cell line, and was not evident in any of the other nonprostate cells types tested, confirming the specificity of Ad[I/PPT-E1A]. Thus, using a relevant panel of primary human cells provides a convenient and alternative preclinical assay for examining the specificity of conditionally replicating oncolytic adenoviruses in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Destruction of cancer cells by genetically modified viral and nonviral vectors has been the aim of many research programs. The ability to target cytotoxic gene therapies to the cells of interest is an essential prerequisite, and the treatment has always had the potential to provide better and more long-lasting therapy than existing chemotherapies. However, the potency of these infectious agents requires effective testing systems, in which hypotheses can be explored both in vitro and in vivo before the establishment of clinical trials in humans. The real prospect of off-target effects should be eliminated in the preclinical stage, if current prejudices against such therapies are to be overcome. In this review we have set out, using adenoviral vectors as a commonly used example, to discuss some of the key parameters required to develop more effective testing, and to critically assess the current cellular models for the development and testing of prostate cancer biotherapy. Only by developing models that more closely mirror human tissues will we be able to translate literature publications into clinical trials and hence into acceptable alternative treatments for the most commonly diagnosed cancer in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF) cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid) contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%). We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Altered expression of the INT6 gene, encoding the e subunit of the translational initiation factor eIF3, occurs in human breast cancers, but how INT6 relates to carcinogenesis remains unestablished. Here, we show that INT6 is involved in the DNA damage response. INT6 was required for cell survival following γ-irradiation and G(2)-M checkpoint control. RNA interference-mediated silencing of INT6 reduced phosphorylation of the checkpoint kinases CHK1 and CHK2 after DNA damage. In addition, INT6 silencing prevented sustained accumulation of ataxia telangiectasia mutated (ATM) at DNA damage sites in cells treated with γ-radiation or the radiomimetic drug neocarzinostatin. Mechanistically, this result could be explained by interaction of INT6 with ATM, which together with INT6 was recruited to the sites of DNA damage. Finally, INT6 silencing also reduced ubiquitylation events that promote retention of repair proteins at DNA lesions. Accordingly, accumulation of the repair factor BRCA1 was defective in the absence of INT6. Our findings reveal unexpected and striking connections of INT6 with ATM and BRCA1 and suggest that the protective action of INT6 in the onset of breast cancers relies on its involvement in the DNA damage response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioactive materials with osteostimulation properties are of great importance to promote osteogenic differentiation of human bone marrow stromal cells (hBMSCs) for potential bone regeneration. We have recently synthesized nagelschmidtite (NAGEL, Ca7Si2P2O16) ceramic powders which showed excellent apatite-mineralization ability. The aim of this study was to investigate the interaction of hBMSCs with NAGEL bioceramic bulks and their ionic extracts, and to explore the osteostimulation properties of NAGEL bioceramics and the possible molecular mechanism. The cell attachment, proliferation, bone-related gene expression (ALP, OPN and OCN) and WNT signalling pathways (WNT3a, FZD6, AXIN2 and CTNNB) of hBMSCs cultured on NAGEL bioceramic disks were systematically studied. We further investigated the biological effects of ionic products from NAGEL powders on cell proliferation and osteogenic differentiation of hBMSCs by culturing cells with NAGEL extracts. Furthermore, the effect of NAGEL bioceramics on the osteogenic differentiation in hBMSCs was also investigated with the addition of cardamonin, a WNT inhibitor. The results showed that NAGEL bioceramic disks supported the attachment and proliferation of hBMSCs, and significantly enhanced the bone-related gene expression and WNT signalling pathway of hBMSCs, compared to conventional beta-tricalcium phosphate (β-TCP) bioceramic disks and blank controls. The ionic products from NAGEL powders also significantly promoted the proliferation, bone and WNT-related gene expression of hBMSCs. It was also identified that NAGEL bioceramics could bypass the action of the WNT inhibitor (10 μM) to stimulate the selected osteogenic genes in hBMSCs. Our results suggest that NAGEL bioceramics possess excellent in vitro osteostimulation properties. The possible mechanism for the osteostimulation may be directly related to the released Si, Ca and P-containing ionic products from NAGEL bioceramics which activate bone-related gene expression and WNT signalling pathway of hBMSCs. The present study suggests that NAGEL bioceramics are a potential bone regeneration material with significant osteostimulation capacity.