613 resultados para Hot rolled steel coils
Resumo:
A support ring of AISI 304L stainless steel that holds vertical, parallel wires arranged in a circle forming a cylinder is studied. The wires are attached to the ring with heat-induced shrinkage. When the ring is heated with a torch the heat affected zone tries to expand while the adjacent cool structure obstructs the expansion causing upsetting. During cooling, the ring shrinks smaller than its original size clamping the wires. The most important requirement for the ring is that it should be as round as possible and the deformations should occur as overall shrinkage in the ring diameter. A three-dimensional nonlinear transient sequential thermo-structural Abaqus model is used together with a Fortran code that enters the heat flux to each affected element. The local and overall deformations in one ring inflicted by the heating are studied with a small amount of inspection on residual stresses. A variety of different cases are chosen to be studied with the model constructed to provide directional knowledge; torch flux with the means of speed, location of the wires, heating location and structural factors. The decrease of heating speed increases heat flux that rises the temperature increasing shrinkage. In a single progressive heating uneven distribution of shrinkage appears to the start/end region that can be partially fixed with using speeded heating’s to strengthen the heating of that region. Location of the wires affect greatly to the caused shrinkage unlike heating location. The ring structure affects also greatly to the shrinkage; smaller diameter, bigger ring height, thinner thickness and greater number of wires increase shrinkage.
Resumo:
Rough turning is an important form of manufacturing cylinder-symmetric parts. Thus far, increasing the level of automation in rough turning has included process monitoring methods or adaptive turning control methods that aim to keep the process conditions constant. However, in order to improve process safety, quality and efficiency, an adaptive turning control should be transformed into an intelligent machining system optimizing cutting values to match process conditions or to actively seek to improve process conditions. In this study, primary and secondary chatter and chip formation are studied to understand how to measure the effect of these phenomena to the process conditions and how to avoid undesired cutting conditions. The concept of cutting state is used to address the combination of these phenomena and the current use of the power capacity of the lathe. The measures to the phenomena are not developed based on physical measures, but instead, the severity of the measures is modelled against expert opinion. Based on the concept of cutting state, an expert system style fuzzy control system capable of optimizing the cutting process was created. Important aspects of the system include the capability to adapt to several cutting phenomena appearing at once, even if the said phenomena would potentially require conflicting control action.
Resumo:
In this thesis the effect of focal point parameters in fiber laser welding of structural steel is studied. The goal is to establish relations between laser power, focal point diameter and focal point position with the resulting quality, weld-bead geometry and hardness of the welds. In the laboratory experiments, AB AH36 shipbuilding steel was welded in an I-butt joint configuration using IPG YLS-10000 continuous wave fiber laser. The quality of the welds produced were evaluated based on standard SFS-EN ISO 13919-1. The weld-bead geometry was defined from the weld cross-sections and Vickers hardness test was used to measure hardness's from the middle of the cross-sections. It was shown that all the studied focal point parameters have an effect on the quality, weld-bead geometry and hardness of the welds produced.
Resumo:
Individuals with systemic arterial hypertension have a higher risk of heat-related complications. Thus, the aim of this study was to examine the thermoregulatory responses of hypertensive subjects during recovery from moderate-intensity exercise performed in the heat. A total of eight essential hypertensive (H) and eight normotensive (N) male subjects (age=46.5±1.3 and 45.6±1.4 years, body mass index=25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure=98.0±2.8 and 86.0±2.3 mmHg, respectively) rested for 30 min, performed 1 h of treadmill exercise at 50% of maximal oxygen consumption, and rested for 1 h after exercise in an environmental chamber at 38°C and 60% relative humidity. Skin and core temperatures were measured to calculate heat exchange parameters. Mean arterial pressure was higher in the hypertensive than in the normotensive subjects throughout the experiment (P<0.05, unpaired t-test). The hypertensive subjects stored less heat (H=-24.23±3.99 W·m−2vs N=-13.63±2.24 W·m−2, P=0.03, unpaired t-test), experienced greater variations in body temperature (H=-0.62±0.05°C vsN=-0.35±0.12°C, P=0.03, unpaired t-test), and had more evaporated sweat (H=-106.1±4.59 W·m−2vs N=-91.15±3.24 W·m−2, P=0.01, unpaired t-test) than the normotensive subjects during the period of recovery from exercise. In conclusion, essential hypertensive subjects showed greater sweat evaporation and increased heat dissipation and body cooling relative to normotensive subjects during recovery from moderate-intensity exercise performed in hot conditions.
Resumo:
Cashew (Anacardium occidentale L.) apples from Pacajus, Ceará State, Brazil, were processed into high pulp content juice. The juice was packed either by hot fill or an aseptic process and evaluated for physical, physical-chemical, and sensorial changes during a 12-month storage period at room temperature. The results indicated that pH, soluble solids, total acidity, total sugar content and color did not change significantly during storage nor were affected by the type of filling. The sensorial analysis showed that juice acceptance remained high throughout the storage period regardless of the filling system. Differences in juice viscosity persisted between both processes.
Resumo:
Este trabalho objetivou avaliar a estabilidade do suco tropical de acerola adoçado, elaborado pelos processos hot fill (garrafas de vidro) e asséptico (embalagens cartonadas), com relação às alterações químicas e físico-químicas (pH, sólidos solúveis totais, acidez total titulável, cor, açúcares redutores, não redutores e totais), sensoriais e microbiológicas, durante 350 dias de armazenamento em condições similares às de comercialização (28 °C ± 2 °C). Ao final do experimento, constatou-se que as amostras de suco de ambos os processos mantiveram uma adequada estabilidade microbiológica. O suco do processo hot fill teve maior aceitação global, enquanto o do processo asséptico manteve, ao final dos 350 dias, a aceitação inicial. As amostras do processo asséptico apresentaram inicialmente melhor sabor em comparação com as do processo hot fill, no entanto, as do processo hot fill mantiveram o sabor estável, enquanto o sabor do suco do processo asséptico teve menor aceitação ao longo do armazenamento. Ainda foram observadas, alterações químicas e físico-químicas nos sucos de ambos os processos. Em geral, o processo hot fill foi o mais eficiente em manter a estabilidade do suco.
Resumo:
In this thesis work, a strength analysis is made for a boat trailer. The studied trailer structure is manufactured from Ruukki’s structural steel S420. The main focus in this work is in the trailer’s frame. The investigation process consists two main stages. These stages are strain gage measurements and finite elements analysis. Strain gage measurements were performed to the current boat trailer in February 2015. Static durability and fatigue life of the trailer are analyzed with finite element analysis and with two different materials. These materials are the current trailer material Ruukki’s structural steel S420 and new option material high strength precision tube Form 800. The main target by using high strength steel in a trailer is weight reduction. The applied fatigue analysis methods are effective notch stress and structural hot spot stress approaches. The target of these strength analyses is to determine if it is reasonable to change the trailer material to high strength steel. The static strengths of the S420 and Form 800 trailers is sufficient. The fatigue strength of the Form 800 trailer is considerably lower than the fatigue strength of the S420 trailer. For future research, the effect of hot dip galvanization to the high strength steel has to be investigated. The effect of hot dip galvanization to the trailer is investigated by laboratory tests that are not included in this thesis.
The adherence of Pseudomonas fluorescens to marble, granite, synthetic polymers, and stainless steel
Resumo:
The adherence of Pseudomonas fluorescens cells to nine food-processing contact surfaces was evaluated using the plate-count method. The surfaces include marble, granite, stainless steel, polyvinyl chloride, polyurethane, and silicone-coated cloth, which have been used only in a few studies concerning bacterial adherence. The number of cells adhered to the surfaces increased with contact time reaching 5.0-6.1 log CDM.cm-2 after 10 hours, which can be considered a well established adherence process. The number of adhered cells doubled in 29.5 minutes and 23.5 minutes on stainless steel and thin polyvinyl chloride-coated cloth, respectively. For the other surfaces, this value was 9.8 minutes on average. Marble, granite, thick polyvinyl-coated cloth, double-faced rugous polyurethane, and silicone-coated cloth were not different (p < 0.05) in their ability to adhere cells (CFU/cm²) after 2 and 10 hours. The surfaces that had higher percentage of similarity in the adhesion level and higher log CFU/cm² of adhered cells were double-faced rugous polyurethane, silicone-coated cloth, and granite. The surfaces showed very different microtopography characteristics when viewed using scanning electron microscopy. This experiment showed the importance of using appropriate materials for food contact during processing, which will affect the cleaning and sanitation procedures.
Chemical sanitizers to control biofilms formed by two Pseudomonas species on stainless steel surface
Resumo:
The biofilm formation of Pseudomonas aeruginosa and Pseudomonas fluorescens on AISI 304 stainless steel in the presence of reconstituted skim milk under different temperatures was conducted, and the potential of three chemical sanitizers in removing the mono-species biofilms formed was compared. Pseudomonas aeruginosa cultivated in skim milk at 28 °C presented better growth rate (10.4 log CFU.mL-1) when compared with 3.7 and 4.2 log CFU.mL-1 for P. aeruginosa and P. fluorescens cultivated at 7 °C, respectively. Pseudomonas aeruginosa formed biofilm when cultivated at 28 °C. However, only the adhesion of P. aeruginosa and P. fluorescens was observed when incubated at 7 °C. The sodium dichloroisocyanurate was the most efficient sanitizer in the reduction of the adhered P. aeruginosa cells at 7 and 28 °C and those on the biofilm, respectively. The hydrogen peroxide was more effective in the reduction of adhered cells of P. fluorescens at 7 °C.
Resumo:
Chemical composition and nutritive value of hot pepper seeds (Capsicum annuum) grown in Northeast Region of China were investigated. The proximate analysis showed that moisture, ash, crude fat, crude protein and total dietary fiber contents were 4.48, 4.94, 23.65, 21.29 and 38.76 g/100 g, respectively. The main amino acids were glutamic acid and aspartic acid (above 2 g/100 g), followed by histidine, phenylalanine, lysine, arginine, cysteine, leucine, tryptophan, serine, glycine, methionine, threonine and tyrosine (0.8-2 g/100 g). The contents of proline, alanine, valine and isoleucine were less than 0.8 g/100 g. The fatty acid profile showed that linoleic acid, palmitic acid, oleic acid, stearic acid and linolenic acid (above 0.55 g/100 g) as the most abundant fatty acids followed lauric acid, arachidic acid, gondoic acid and behenic acid (0.03-0.15 g/100 g). Analyses of mineral content indicated that the most abundant mineral was potassium, followed by magnesium, calcium, iron, zinc, sodium and manganese. The nutritional composition of hot pepper seeds suggested that they could be regarded as good sources of food ingredients and as new sources of edible oils.
Resumo:
The aim of this work was to calibrate the material properties including strength and strain values for different material zones of ultra-high strength steel (UHSS) welded joints under monotonic static loading. The UHSS is heat sensitive and softens by heat due to welding, the affected zone is heat affected zone (HAZ). In this regard, cylindrical specimens were cut out from welded joints of Strenx® 960 MC and Strenx® Tube 960 MH, were examined by tensile test. The hardness values of specimens’ cross section were measured. Using correlations between hardness and strength, initial material properties were obtained. The same size specimen with different zones of material same as real specimen were created and defined in finite element method (FEM) software with commercial brand Abaqus 6.14-1. The loading and boundary conditions were defined considering tensile test values. Using initial material properties made of hardness-strength correlations (true stress-strain values) as Abaqus main input, FEM is utilized to simulate the tensile test process. By comparing FEM Abaqus results with measured results of tensile test, initial material properties will be revised and reused as software input to be fully calibrated in such a way that FEM results and tensile test results deviate minimum. Two type of different S960 were used including 960 MC plates, and structural hollow section 960 MH X-joint. The joint is welded by BöhlerTM X96 filler material. In welded joints, typically the following zones appear: Weld (WEL), Heat affected zone (HAZ) coarse grained (HCG) and fine grained (HFG), annealed zone, and base material (BaM). Results showed that: The HAZ zone is softened due to heat input while welding. For all the specimens, the softened zone’s strength is decreased and makes it a weakest zone where fracture happens while loading. Stress concentration of a notched specimen can represent the properties of notched zone. The load-displacement diagram from FEM modeling matches with the experiments by the calibrated material properties by compromising two correlations of hardness and strength.
Resumo:
Människor utnyttjar ofta kemi mångsidigt i sitt vardagliga liv utan att närmare tänka på detaljerna. Nuförtiden kan man framställa en ökande mängd av produkter ur förnybara råmaterial och en av de mest mångsidiga nybara råmaterialet i Norden är barrträd. Den lyriska lägerelden eller spiselden och möbler av ved samt papper är en väsentlig del av vardagen. Också livsmedel och läkemedel kan innehålla föreningar ur ved. Ved som råmaterial består av tre huvudkomponenten: cellulosa, som är uppbyggd av druvsockermolekyler är en långkedjad, oförgrenad polymer; lignin, som sammanhåller fibrerna i vedmaterialet som lim samt hemicellulosor, som ofta är uppbyggda av olika sockerarter och är en förgrenad polymer. Följaktligen består vedmaterialet av 70 % socker. I detta arbete har vi koncentrerat på i hemicellulosa och dess extraktion ur gran, samt bestämning av hemicellulosans egenskaper. Den slutliga målsättningen i forskningen var att skapa nya produkter ur gran. Forskning i extraktionens hemligheter eller hur hemicellulosa kan effektivt extraheras i den önskade formen kräver nya typers experimentellasanläggningar och experiment samt matematisk modellering. Den långkedjade hemicellulosan är lämplig för att användas t.ex. i skyddshinnor eller i livsmedel. Medel- och småmolekylär hemicellulosa kan användas som utgångsämne för framställning av bränslen, smörjmedel, sockersyror och alkoholer, av vilka xylitol är mest känd för alla pga hälsobefrämjande effekter. Det är utomordentligt viktigt ur miljöns och energiekonomins synvinkel att sträva efter effektivering av utnyttjandet av den värdefullaste och största naturtillgången, skogen i vårt land, med alla möjliga sätt. Resultaten av denna forskning utnyttjar avsevärt den växande, nya, på skogen baserande biobaseradeindustrin, som framställer nya spetsprodukter samt skapar nya arbetsplatser. ----------------------------------------------------- Ihmiset hyödyntävät usein huomaamattaan kemiaa monipuolisesti jokapäiväisessä elämässä. Nykyään kasvava määrä tuotteista kyetään valmistamaan uusiutuvista raaka-aineista ja yksi monipuolisimmista uusiutuvista luonnonvaroistamme pohjolassa ovat havupuut. Tunnelmallinen nuotio tai takkatuli ja puiset huonekalut sekä paperi ovat olennainen osa arkea. Myös elintarvikkeet ja lääkkeet voivat sisältää puusta peräisin olevia yhdisteitä. Puu materiaalina koostuu rakenteeltaan pääosin kolmesta osasta; selluloosasta, joka on rypälesokerista koostuva pitkäketjuinen haaroittumaton polymeeri, ligniinistä, joka toimii puun koossa pitävänä liima-aineena ja hemiselluloosasta, joka on useista eri sokereista rakentunut haaroittunut polymeeri. Näin ollen puusta 70 % on sokeria. Tässä työssä olemme keskittyneet hemiselluloosaan ja sen uuttamiseen kuusesta, sekä ominaisuuksien kartoittamiseen. Tutkimusaiheen lopullinen tavoite on luoda uusia tuotteita kuusesta. Uuton salojen tutkiminen eli miten hemiselluloosa saadaan tehokkaasti uutettua halutunlaisena vaatii uudenlaisia koelaitteistoja ja kokeita, sekä matemaattista mallintamista. Suurikokoinen hemiselluloosa on sopivaa käytettäväksi esimerkiksi suojakalvoissa tai elintarvikkeissa. Keskikokoista ja pienimolekyylistä hemiselluloosaa voidaan käyttää lähtöaineena valmistettaessa polttoaineita, voiteluaineita, sokerihappoja ja sokerialkoholeja, joista xylitoli on terveysvaikutustensa vuoksi kaikille tuttu. Niin ympäristömme kuin myös energiataloutemme kannalta on ensiarvoisen tärkeää pyrkiä kaikin keinoin tehostamaan maallemme arvokkaan, sekä luonnonvaroistamme yhden suurimman, metsän, vastuullista hyödyntämistä. Tämän tutkimuksen tulokset hyödyntävät merkittävästi maahamme nousevaa uutta metsään pohjautuvaa biojalostusteollisuutta, joka valmistaa uusia huipputuotteita sekä luo työpaikkoja.
Resumo:
Strenx® 960 MC is a direct quenched type of Ultra High Strength Steel (UHSS) with low carbon content. Although this material combines high strength and good ductility, it is highly sensitive towards fabrication processes. The presence of stress concentration due to structural discontinuity or notch will highlight the role of these fabrication effects on the deformation capacity of the material. Due to this, a series of tensile tests are done on both pure base material (BM) and when it has been subjected to Heat Input (HI) and Cold Forming (CF). The surface of the material was dressed by laser beam with a certain speed to study the effect of HI while the CF is done by bending the specimen to a certain angle prior to tensile test. The generated results illustrate the impact of these processes on the deformation capacity of the material, specially, when the material has HI experience due to welding or similar processes. In order to compare the results with those of numerical simulation, LS-DYNA explicit commercial package has been utilized. The generated results show an acceptable agreement between experimental and numerical simulation outcomes.
Resumo:
Finnish design and consulting companies are delivering robust and cost-efficient steel structures solutions to a large number of manufacturing companies worldwide. Recently introduced EN 1090-2 standard obliges these companies to specify the execution class of steel structures for their customers. This however, requires clarifying, understanding and interpreting the sophisticated procedure of execution class assignment. The objective of this research is to provide a clear explanation and guidance through the process of execution class assignment for a given steel structure and to support the implementation of EN 1090-2 standard in Rejlers Oy, one of Finnish design and consulting companies. This objective is accomplished by creating a guideline for designers that elaborates on the four-step process of the execution class assignment for a steel structure or its part. Steps one to three define the consequence class (projected consequences of structure failure), the service category (hazards associated with the service use exploitation of steel structure) and the production category (manufacturing process peculiarities), based on the ductility class (capacity of structure to withstand deformations) and the behaviour factor (corresponds to structure seismic behaviour). The final step is the execution class assignment taking into account results of previous steps. Main research method is indepth literature review of European standards family for steel structures. Other research approach is a series of interviews of Rejlers Oy representatives and its clients, results of which have been used to evaluate the level of EN 1090-2 awareness. Rejlers Oy will use the developed novel coherent standard implementation guideline to improve its services and to obtain greater customer satisfaction.