509 resultados para Histocompatibility.
Resumo:
Interaction between CD40 on B cells and CD40 ligand molecules on T cells is pivotal for the generation of a thymus-dependent antibody response. Here we show that B cells deficient in CD40 expression are unable to elicit the proliferation of allogeneic T cells in vitro. More importantly, mice immunized with CD40-/- B cells become tolerant to allogeneic major histocompatibility complex (MHC) antigens as measured by a mixed lymphocyte reaction and cytotoxic T-cell assay. The failure of CD40-/- B cells to serve as antigen presenting cells in vitro was corrected by the addition of anti-CD28 mAb. Moreover, lipopolysaccharide stimulation, which upregulates B7 expression, reversed the inability of CD40-/- B cells to stimulate an alloresponse in vitro and abrogated the capacity of these B cells to induce tolerance in vivo. These results suggest that CD40 engagement by CD40 ligand expressed on antigen-activated T cells is critical for the upregulation of B7 molecules on antigen-presenting B cells that subsequently deliver the costimulatory signals necessary for T-cell proliferation and differentiation. Our experiments suggest a novel strategy for the induction of antigen-specific tolerance in vivo.
Resumo:
The role of inflammatory T cells in Crohn's disease suggests that inherited variations in major histocompatibility complex (MHC) class II genes may be of pathogenetic importance in inflammatory bowel disease. The absence of consistent and strong associations with MHC class II genes in Caucasian patients with inflammatory bowel disease probably reflects the use of less precise typing approaches and the failure to type certain loci by any means. A PCR-sequence-specific oligonucleotide-based approach was used to type individual alleles of the HLA class II DRB1, DRB3, DRB4, and DRB5 loci in 40 patients with ulcerative colitis, 42 Crohn's disease patients, and 93 ethnically matched healthy controls. Detailed molecular typing of the above alleles has previously not been reported in patients with inflammatory bowel disease. A highly significant positive association with the HLA-DRB3*0301 allele was observed in patients with Crohn's disease (P = 0.0004) but not in patients with ulcerative colitis. The relative risk for this association was 7.04. Other less significant HLA class II associations were also noted in patients with Crohn's disease. One of these associations involved the HLA-DRB1*1302 allele, which is known to be in linkage disequilibrium with HLA-DRB3*0301. These data suggest that a single allele of an infrequently typed HLA class II locus is strongly associated with Crohn's disease and that MHC class II molecules may be important in its pathogenesis.
Resumo:
Although immunosuppressive therapy minimizes the risk of graft failure due to acute rejection, transplant-associated arteriosclerosis of the coronary arteries remains a significant obstacle to the long-term survival of heart transplant recipients. The participation of specific inflammatory cell types in the genesis of this lesion was examined in a mouse model in which carotid arteries were transplanted across multiple histocompatibility barriers into seven mutant strains with immunologic defects. An acquired immune response--with the participation of CD4+ (helper) T cells, humoral antibody, and macrophages--was essential to the development of the concentric neointimal proliferation and luminal narrowing characteristic of transplant arteriosclerosis. CD8+ (cytotoxic) T cells and natural killer cells were not involved in the process. Arteries allografted into mice deficient in both T-cell receptors and humoral antibody showed almost no neointimal proliferation, whereas those grafted into mice deficient only in helper T cells, humoral antibody, or macrophages developed small neointimas. These small neointimas and the large neointimas of arteries grafted into control animals contained a similar number of inflammatory cells; however, smooth muscle cell number and collagen deposition were diminished in the small neointimas. Also, the degree of inflammatory reaction in the adventitia did not correlate with the size of the neointima. Thus, the reduction in neointimal size in arteries allografted into mice deficient in helper T cells, humoral antibody, or macrophages may be accounted for by a decrease in smooth muscle cell migration or proliferation.
Resumo:
Myasthenia gravis is an autoimmune disease in which T cells specific to epitopes of the autoantigen, the human acetylcholine receptor, play a role. We identified two peptides, p195-212 and p259-271, from the alpha subunit of the receptor, which bound to major histocompatibility complex (MHC) class II molecules on antigen-presenting cells (APCs) from peripheral blood lymphocytes of myasthenia gravis patients and stimulated lymphocytes of >80% of the patients. We have prepared analogs of these myasthenogenic peptides and tested their ability to bind to MHC class II determinants and to interfere specifically with T-cell stimulation. We first determined relative binding efficiency of the myasthenogenic peptides and their analogs to APCs of patients. We found that single substituted analogs of p195-212 (Ala-207) and p259-271 (Lys-262) could bind to human MHC molecules on APCs as efficiently as the original peptides. Moreover, dual analogs containing the two single substituted analogs in one stretch (either sequentially, Ala-207/Lys-262, or reciprocally, Lys-262/Ala-207) could also bind to APCs of patients, including those that failed to bind one of the single substituted analogs. The single substituted analogs significantly inhibited T-cell stimulation induced by their respective myasthenogenic peptides in >95% of the patients. The dual analogs were capable of inhibiting stimulation induced by either of the peptides: They inhibited the response to p195-212 and p259-271 in >95% and >90% of the patients, respectively. Thus, the dual analogs are good candidates for inhibition of T-cell responses of myasthenia gravis patients and might have therapeutic potential.
Resumo:
For mammals beta2-microglobulin (beta2m), the light chain of major histocompatibility complex (MHC) class I molecules, is invariant (or highly conserved) and is encoded by a single gene unlinked to the MHC. We find that beta2m of a salmonid fish, the rainbow trout (Oncorhynchus mykiss), does not conform to the mammalian paradigm. Ten of 12 randomly selected beta2m cDNA clones from an individual fish have different nucleotide sequences. A complex restriction fragment length polymorphism pattern is observed with rainbow trout, suggesting multiple beta2m genes in the genome, in excess of the two genes expected from the ancestral salmonid tetraploidy. Additional duplication and diversification of the beta2m genes might have occurred subsequently. Variation in the beta2m cDNA sequences is mainly at sites that do not perturb the structure of the mature beta2m protein, showing that the observed diversity of the trout beta2m genes is not primarily a result of pathogen selection.
Resumo:
To better understand the role of class II major histocompatibility complex molecules in both normal and autoimmune responses, we have produced a series of I-Ab transgenic mice. One of these transgenic constructs, designated NOD.PD, has the sequence of the NOD beta chain (Abeta(g7)) except at positions 56 and 57, where Pro-Asp replaces His-Ser. Several NOD.PD transgenic lines have been produced. One line of these mice carried a very high number of copies (>50) of the NOD.PD transgene. As has been described in other mice carrying high copy numbers of I-Ab transgenes, B-cell development was abnormal. The steady state numbers of mature B cells (IgM+/IgD(hi)) in the periphery were greatly reduced in transgenic mice compared to nontransgenic littermates. Surprisingly, rather than being accompanied by a generalized hypogammaglobulinemia, this B-cell deficiency was accompanied by elevated concentrations of IgG1 and IgE in the serum. Conversely, the levels of IgG2a were reduced in transgenic mice compared to nontransgenic littermates. Because this isotype pattern was characteristic of interleukin (IL)-4-induced class-switching, we then investigated the role of IL-4 in causing the observed phenotype. We crossed the high copy number transgenic mice with an IL-4-deficient strain of mice. As expected, the elevated levels of IgE in high copy number transgenic mice were eliminated when the IL-4 gene was inactivated. However, the reduction in the number of B cells was not ameliorated. These data indicate that the primary defect caused by the transgene was to reduce the number of B cells in these mice. This reduction was accompanied by a secondary increase in IL-4 production, which drove the remaining B cells toward the production of IgGl and IgE.
Resumo:
Glycosylation-inhibiting factor (GIF) is a cytokine that is involved in the regulation of IgE synthesis. The crystal structure of recombinant human GIF was determined by the multiple isomorphous replacement method. The structure was refined to an R factor of 0.168 at 1.9 angstrom resolution. The overall structure is seen to consist of three interconnected subunits forming a barrel with three 6-stranded beta-sheets on the inside and six alpha-helices on the outside. There is a 5-angstrom-diameter "hole" through the middle of the barrel. The barrel structure of GIF in part resembles other "trefoil" cytokines such as interleukin 1 and fibroblast growth factor. Each subunit has a new class of alpha + beta sandwich structure consisting of two beta-alpha-beta motifs. These beta-alpha-beta motifs are related by a pseudo-twofold axis and resemble both interleukin 8 and the peptide binding domain of major histocompatibility complex protein, although the topology of the polypeptide chain is quite different.
Resumo:
T lymphocytes recognize specific ligands by clonally distributed T-cell receptors (TCR). In humans and most animals, the vast majority of T cells express a TCR composed of an alpha chain and a beta chain, whereas a minor T-cell population is characterized by the TCR gamma/delta. Almost all of our knowledge about T cells stems from alpha/beta T cells and only now are we beginning to understand gamma/delta T cells. In contrast to conventional alpha/beta T cells, which are specific for antigenic peptides presented by gene products of the major histocompatibility complex, gamma/delta T cells directly recognize proteins and even nonproteinacious phospholigands. These findings reveal that gamma/delta T cells and alpha/beta T cells recognize antigen in a fundamentally different way and hence mitigate the dogma of exclusive peptide-major histocompatibility complex recognition by T cells. A role for gamma/delta T cells in antimicrobial immunity has been firmly established. Although some gamma/delta T cells perform effector functions, regulation of the professional and the nonprofessional immune system seems to be of at least equal importance. The prominent residence of gamma/delta T cells in epithelial tissues and the rapid mobilization of gamma/delta T cells in response to infection are consistent with such regulatory activities under physiological and pathologic conditions. Thus, although gamma/delta T cells are a minor fraction of all T cells, they are not just uninfluential kin of alpha/beta T cells but have their unique raison d'être.
Resumo:
The major histocompatibility complex class II genes play an important role in the genetic predisposition to many autoimmune diseases. In the case of rheumatoid arthritis (RA), the human leukocyte antigen (HLA)-DRB1 locus has been implicated in the disease predisposition. The "shared epitope" hypothesis predicts that similar motifs within the third hypervariable (HV3) regions of some HLA-DRB1 alleles are responsible for the class II-associated predisposition to RA. Using a line of transgenic mice expressing the DQB1*0302/DQA1*0301 (DQ8) genes in the absence of endogenous mouse class II molecules, we have analyzed the antigenicity of peptides covering the HV3 regions of RA-associated and nonassociated DRB1 molecules. Our results show that a correlation exists between proliferative response to peptides derived from the HV3 regions of DRB1 chains and nonassociation of the corresponding alleles with RA predisposition. While HV3 peptides derived from nonassociated DRB1 molecules are highly immunogenic in DQ8 transgenic mice, all the HV3 peptides derived from RA-associated DRB1 alleles fail to induce a DQ8-restricted T-cell response. These data suggest that the role of the "shared epitope" in RA predisposition may be through the shaping of the T-cell repertoire.
Resumo:
We propose a quantitative model for T-cell activation in which the rate of dissociation of ligand from T-cell receptors determines the agonist and antagonist properties of the ligand. The ligands are molecular complexes between antigenic peptides and proteins of the major histocompatibility complex on the surfaces of antigen-presenting cells. Binding of ligand to receptor triggers a series of biochemical reactions in the T cell. If the ligand dissociates after these reactions are complete, the T cell receives a positive activation signal. However, dissociation of ligand after completion of the first reaction but prior to generation of the final products results in partial T-cell activation, which acts to suppress a positive response. Such a negative signal is brought about by T-cell ligands containing the variants of antigenic peptides referred to as T-cell receptor antagonists. Results of recent experiments with altered peptide ligands compare favorably with T-cell responses predicted by this model.
Resumo:
The structure of the human major histocompatibility complex (MHC) class II molecule HLA-DR1 derived from the human lymphoblastoid cell line LG-2 has been determined in a complex with the Staphylococcus aureus enterotoxin B superantigen. The HLA-DR1 molecule contains a mixture of endogenous peptides derived from cellular or serum proteins bound in the antigen-binding site, which copurify with the class II molecule. Continuous electron density for 13 amino acid residues is observed in the MHC peptide-binding site, suggesting that this is the core length of peptide that forms common interactions with the MHC molecule. Electron density is also observed for side chains of the endogenous peptides. The electron density corresponding to peptide side chains that interact with the DR1-binding site is more clearly defined than the electron density that extends out of the binding site. The regions of the endogenous peptides that interact with DRI are therefore either more restricted in conformation or sequence than the peptide side chains or amino acids that project out of the peptide-binding site. The hydrogen-bond interactions and conformation of a peptide model built into the electron density are similar to other HLA-DR-peptide structures. The bound peptides assume a regular conformation that is similar to a polyproline type II helix. The side-chain pockets and conserved asparagine residues of the DR1 molecule are well-positioned to interact with peptides in the polyproline type II conformation and may restrict the range of acceptable peptide conformations.
Resumo:
Some self-reactive T cells avoid thymic tolerance and become mature peripheral cells. Nevertheless, these cells do not usually attack their hosts because T cells can be inactivated or killed, even after they are mature, by various means. The details of these processes are not fully understood; however, a number of experiments have suggested that peripheral tolerance may be induced in mature mouse T cells by exposure to antigen on resting B cells, cells that can express antigen bound to major histocompatibility complex proteins but that lack critical costimulatory molecules such as B7-1 and B7-2. Conversely, previous experiments have indicated that mature T cells can be stimulated by exposure to antigen on cells such as dendritic cells, cells that are thought to express the essential costimulatory molecules. We tested this idea in vivo by using mice that lack B cells. Unexpectedly, T-cell tolerance and antigen-induced T-cell death occurred normally in mice free of B cells. On the other hand, antigen-specific T-cell expansion in the spleens of such mice was impaired. Finally, we have recently shown that T-cell death in mice can be prevented by exposure to antigen and an inflammatory agent such as bacterial lipopolysaccharide. This was also true in mice that lacked B cells. Overall, these data show that mature T cells can be tolerized and rescued from tolerance in the absence of B cells.
Resumo:
HLA-G is a nonclassical class I major histocompatibility complex molecule with a restricted pattern of expression that includes the placental extravillus cytotrophoblast cells in direct contact with maternal tissues. Circumstantial evidence suggests that HLA-G may play a role in protection of the semiallogeneic human fetus. We examined whether HLA-G is expressed during the critical period of preimplantation human development and whether expression of this molecule could be correlated with the cleavage rate of embryos. Using reverse transcription PCR on surplus human embryos and unfertilized oocytes from patients undergoing in vitro fertilization we detected HLA-G heavy chain mRNA in 40% of 148 of blastocysts tested. The presence of HLA-G mRNA was also detected in unfertilized oocytes and in early embryos, but not in control cumulus oophorus cells. beta 2-Microglobulin mRNA was also found in those embryos expressing HLA-G. In concordance with our mRNA data, a similar proportion of embryos stained positive for HLA-G utilizing a specific monoclonal antibody. Interestingly, expression of HLA-G mRNA was associated with an increased cleavage rate, as compared to embryos lacking HLA-G transcript. Thus, HLA-G could be a functional homologue of the mouse Qa-2 antigen, which has been implicated in differences in the rate of preimplantation embryo development. To our knowledge, the presence of HLA-G mRNA and protein in human preimplantation embryos and oocytes has not been reported previously. The correlation of HLA-G mRNA expression with cleavage rate suggests that this molecule may play an important role in human pre-embryo development.
Resumo:
ISG15 is a 15-kDa protein of unique primary amino acid sequence, which is transcriptionally regulated by interferon (IFN) alpha and IFN-beta. Because it is synthesized in many cell types and secreted from human monocytes and lymphocytes, we postulated that ISG15 might act to modulate immune cell function. ISG15 stimulated B-depleted lymphocyte proliferation in a dose-dependent manner with significant proliferation induced by amounts of ISG15 as low as 1 ng/ml (58 pM). Maximal stimulation of [3H]thymidine incorporation by B-depleted lymphocytes occurred at 6-7 days. Immunophenotyping of ISG15-treated B-depleted lymphocyte cultures indicated a 26-fold expansion of natural killer (NK) cells (CD56+). In cytotoxicity assays, ISG15 was a potent inducer of cytolytic activity directed against both K562 (100 lytic units per 10(6) cells) and Daudi (80 lytic units per 10(6) cells) tumor cell targets, indicating that ISG15 enhanced lymphokine-activated killer-like activity. ISG15-induced NK cell proliferation required coculturing of T and NK cells, suggesting that soluble factor(s) were required. Measurement of ISG15-treated cell culture supernatants for cytokines indicated production of IFN-gamma (> 700 units/ml). No interleukin 2 or interleukin 12 was detected. IFN-gamma itself failed to stimulate lymphocyte proliferation and lymphokine-activated killer cell activation. Further, induced expression of IFN-gamma mRNA was detected by reverse transcription-PCR in T lymphocytes after ISG15 treatment but not in NK cells. Enhancement of NK cell proliferation, augmentation of non-major histocompatibility complex-restricted cytotoxicity, and induction of IFN-gamma from T cells identify ISG15 as a member of the cytokine cascade and suggest that it may be responsible for amplifying and directing some of the immunomodulatory effects of IFN-alpha or IFN-beta.
Resumo:
The cholangiopathies are a group of hepatobiliary diseases in which intrahepatic bile duct epithelial cells, or cholangiocytes, are the target for a variety of destructive processes, including immune-mediated damage. We tested the hypothesis that cholangitis could be induced in rodents by immunization with highly purified cholangiocytes. Inbred Wistar rats were immunized with purified hyperplastic cholangiocytes isolated after bile duct ligation from either syngeneic Wistar or allogeneic Fischer 344 rats; control rats were immunized with bovine serum albumin (BSA) or hepatocytes. After immunization with cholangiocytes, recipient animals developed histologic evidence of nonsuppurative cholangitis without inflammation in other organs; groups immunized with BSA or hepatocytes showed no cholangitis. Immunohistochemical studies revealed that portal tract infiltrates around bile ducts consisted of CD3-positive lymphocytes, some of which expressed major histocompatibility complex class II antigen; B cells and exogenous monocytes/macrophages were essentially absent. Transfer of unfractionated ConA-stimulated spleen cells from cholangiocyte-immunized (but not BSA-immunized) rats into recipients also caused nonsuppurative cholangitis. Moreover, these splenocytes from cholangiocyte-immunized (but not BSA-immunized) rats were cytotoxic in vitro for cultured rodent cholangiocytes; no cytotoxicity was observed against a rat hepatocyte cell line. Also, a specific antibody response in sera of cholangiocyte-immunized rats was demonstrated by immunoblots against cholangiocyte proteins. Finally, cholangiograms in cholangiocyte-immunized rats showed distortion and tortuosity of the entire intrahepatic biliary ductal system. This unique rodent model of experimental cholangitis demonstrates the importance of immune mechanisms in the pathogenesis of cholangitis and will prove useful in exploring the mechanisms by which the immune system targets and damages cholangiocytes.