906 resultados para High velocity oxy-fuel (HVOF) spraying
Resumo:
In this study a 5-step reduced chemical kinetic mechanism involving nine species is developed for combustion of Blast Furnace Gas (BFG), a multi-component fuel containing CO/H2/CH4/CO2, typically with low hydrogen, methane and high water fractions, for conditions relevant for stationary gas-turbine combustion. This reduced mechanism is obtained from a 49-reaction skeletal mechanism which is a modified subset of GRI Mech 3.0. The skeletal and reduced mechanisms are validated for laminar flame speeds, ignition delay times and flame structure with available experimental data, and using computational results with a comprehensive set of elementary reactions. Overall, both the skeletal and reduced mechanisms show a very good agreement over a wide range of pressure, reactant temperature and fuel mixture composition. © 2012 The Combustion Institute..
Resumo:
We present temperature-dependent modeling of high-temperature superconductors (HTS) to understand HTS electromagnetic phenomena where temperature fluctuation plays a nontrivial role. Thermal physics is introduced into the well-developed H-formulation model, and the effect of temperature-dependent parameters is considered. Based on the model, we perform extensive studies on two important HTS applications: quench propagation and pulse magnetization. A micrometer-scale quench model of HTS coil is developed, which can be used to estimate minimum quench energy and normal zone propagation velocity inside the coil. In addition, we study the influence of inhomogeneity of HTS bulk during pulse magnetization. We demonstrate how the inhomogeneous distribution of critical current inside the bulk results in varying degrees of heat dissipation and uniformity of final trapped field. The temperature- dependent model is proven to be a powerful tool to study the thermally coupled electromagnetic phenomena of HTS. © 2012 American Institute of Physics.
Resumo:
Measurements and predictions are made of a short cowl co-flowing jet with a bypass ratio of 8:1. The Reynolds number for computations and measurements are matched at 300,000 and the Mach numbers representative of realistic jet conditions with core and co flow velocities of 240m/s and 216m/s respectively. The low Reynolds number of the measurements makes the case well suited to the assessment of large eddy resolving computational strategies. Also, the nozzle concentricity was carefully controlled to deal with the emerging metastability issues of jets with coflow. Measurements of mean quantities and turbulence statistics are made using both two dimensional coincident LDA and PIV systems. The computational simulations are completed on a modest 12×106 mesh. The simulation is now being run on a 50×106 mesh using hybrid RANSNLES (Numerical Large Eddy Simulation). Close to the nozzle wall a k-l RANS model is used. For an axisymmetric jet, comparison is made between simulations which use NLES, RANSNLES and also a simple imposed velocity profile where the nozzle is not modeled. The use of a near wall RANS model is shown to be beneficial. When compared with the measurements the NLES results are encouraging. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
Increasing demand for energy and continuing increase in environmental as well as financial cost of use of fossil fuels drive the need for utilization of fuels from sustainable sources for power generation. Development of fuel-flexible combustion systems is vital in enabling the use of sustainable fuels. It is also important that these sustainable combustion systems meet the strict governmental emission legislations. Biogas is considered as one of the viable sustainable fuels that can be used to power modern gas turbines: However, the change in chemical, thermal and transport properties as well as change in Wobbe index due to the variation of the fuel constituents can have a significant effect on the performance of the combustor. It is known that the fuel properties have strong influence on the dynamic flame response; however there is a lack of detailed information regarding the effect of fuel compositions on the sensitivity of the flames subjected to flow perturbations. In this study, we describe an experimental effort investigating the response of premixed biogas-air turbulent flames with varying proportions of CH4 and CO2 to velocity perturbations. The flame was stabilized using a centrally placed conical bluff body. Acoustic perturbations were imposed to the flow using loud speakers. The flame dynamics and the local heat release rate of these acoustically excited biogas flames were studied using simultaneous measurements of OH and H2CO planar laser induced fluorescence. OH* chemiluminescence along with acoustic pressure measurements were also recorded to estimate the total flame heat release modulation and the velocity fluctuations. The measurements were carried out by keeping the theoretical laminar flame speed constant while varying the bulk velocity and the fuel composition. The results indicate that the flame sensitivity to perturbations increased with increased dilution of CH4 by CO2 at low amplitude forcing, while at high amplitude forcing conditions the magnitude of the flame response was independent of dilution.
Resumo:
Direct Numerical Simulations (DNS) of turbulent n-heptane sprays autoigniting at high pressure (P=24bar) and intermediate air temperature (Tair=1000K) have been performed to investigate the physical mechanisms present under conditions where low-temperature chemistry is expected to be important. The initial turbulence in the carrier gas, the global equivalence ratio in the spray region, and the initial droplet size distribution of the spray were varied. Results show that spray ignition exhibits a spotty nature, with several kernels developing independently in those regions where the mixture fraction is close to its most reactive value ξMR (as determined from homogeneous reactor calculations) and the scalar dissipation rate is low. Turbulence reduces the ignition delay time as it promotes mixing between air and the fuel vapor, eventually resulting in lower values of scalar dissipation. High values of the global equivalence ratio are responsible for a larger number of ignition kernels, due to the higher probability of finding regions where ξ=ξMR. Spray polydispersity results in the occurrence of ignition over a wider range of mixture fraction values. This is a consequence of the inhomogeneities in the mixing field that characterize these sprays, where poorly mixed rich spots are seen to alternate with leaner ones which are well-mixed. The DNS simulations presented in this work have also been used to assess the applicability of the Conditional Moment Closure (CMC) method to the simulation of spray combustion. CMC is found to be a valid method for capturing spray autoignition, although care should be taken in the modelling of the unclosed terms appearing in the CMC equations. © 2013 The Combustion Institute.
Resumo:
The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence. The images were analyzed on both a time and crank angle (CA) basis, showing the time of maximum liquid fuel present in the cylinder and the effect of engine events on the inflow of liquid fuel. The results show details of the liquid fuel distribution as it enters the engine as a function of crankangle degree, volatility and location in the cylinder. A. semi-quantitative analysis based on the integration of the image intensities provides additional information on the temporal distribution of the liquid fuel flow. © 1998 Society of Automotive Engineers, Inc.
Resumo:
This paper describes a computational study of lean premixed high pressure methane-air flames, using Computational Fluid Dynamics (CFD) together with a reactor network approach. A detailed chemical reaction mechanism is employed to predict pollutant concentrations, placing emphasis on nitrogen oxide emissions. The reacting flow field is divided into separate zones in which homogeneity of the physical and chemical conditions prevails. The defined zones are interconnected forming an Equivalent Reactor Network (ERN). Three flames are examined for which experimental data is available. Flame A is characterised by an equivalence ratio of 0.43 while Flames B and C are richer with equivalence ratios of 0.5 and 0.56 respectively. Computations are performed for a range of operating conditions, quantifying the effect in the emitted NOx levels. Model predictions are compared against the available experimental data. Sensitivity analysis is performed to investigate the effect of the network size, in order to define the optimum number of reactors for accurate predictions of the species mass fractions. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Recently, a new numerical benchmark exercise for High Temperature Gas Cooled Reactor (HTGR) fuel depletion was defined. The purpose of this benchmark is to provide a comparison basis for different codes and methods applied to the burnup analysis of HTGRs. The benchmark specifications include three different models: (1) an infinite lattice of tristructural isotropic (TRISO) fuel particles, (2) an infinite lattice of fuel pebbles, and (3) a prismatic fuel including fuel and coolant channels. In this paper, we present the results of the third stage of the benchmark obtained with MCNP based depletion code BGCore and deterministic lattice code HELIOS 1.9. The depletion calculations were performed for three-dimensional model of prismatic fuel with explicitly described TRISO particles as well as for two-dimensional model, in which double heterogeneity of the TRISO particles was eliminated using reactivity equivalent physical transformation (RPT). Generally, good agreement in the results of the calculations obtained using different methods and codes was observed.
Resumo:
Up to 50% increase in the power density of the existing pressurized water reactor (PWR)-type reactors can be achieved by the use of internally and externally cooled annular fuel geometry. As a result, the accumulated stock-piles of Pu, especially if incorporated infertile-free inert matrix, can be burnt at a substantially higher rate as compared with the conventional mixed oxide-fueled reactors operating at standard power density. In this work, we explore the basic feasibility of a PWR core fully loaded with Pu incorporated infertile-free fuel of annular internally and externally cooled geometry and operating at 150% of nominal power density. We evaluate basic burnable poison designs, fuel management strategies, and reactivity feedback coefficients. The three-dimensional full core neutronic analysis performed with Studsvik Core Management System showed that the design of such a Pu-loaded annular fuel core is feasible but significantly more challenging than the Pu fertile-free core with solid fuel pins operating at nominal power density. The main difficulty arises from the fact that the annular fuel core requires at least 50% higher initial Pu loading in order to maintain the standard fuel cycle length of 18 months. Such a high Pu loading results in hardening of the neutron spectrum and consequent reduction in reactivity worth of all reactivity control mechanisms and, in some cases, positive moderator temperature coefficient (MTC). The use of isotopically enriched Gd and Er burnable poisons was found to be beneficial with respect to maximizing Pu burnup and reducing power peaking factors. Overall, the annular fertile-free Pu-loaded high-power-density core appears to be feasible, although it still has relatively high power peaking and potential for slightly positive MTC at beginning of cycle. However, we estimate that limiting the power density to 140% of the nominal case would assure acceptable core power peaking and negative MTC at all times during the cycle.
Resumo:
A new combined Non Fertile and Uranium (CONFU) fuel assembly is proposed to limit the actinides that need long-term high-level waste storage from the pressurized water reactor (PWR) fuel cycle. In the CONFU assembly concept, ∼20% of the UO2 fuel pins are replaced with fertile free fuel hosting the transuranic elements (TRUs) generated in the previous cycle. This leads to a fuel cycle sustainable with respect to net TRU generation, and the amount and radiotoxicity of the nuclear waste can be significantly reduced in comparison with the conventional once-through UO2 fuel cycle. It is shown that under the constraints of acceptable power peaking limits, the CONFU assembly exhibits negative reactivity feedback coefficients comparable in values to those of the reference UO2 fuel. Feasibility of the PWR core operation and control with complete TRU recycle has been shown based on full-core three-dimensional neutronic simulation. However, gradual buildup of small amounts of Cm and Cf challenges fuel reprocessing and fabrication due to the high spontaneous fission rates of these nuclides and heat generation by some Pu, Am, and Cm isotopes. Feasibility of the processing steps becomes more attainable if the time between discharge and reprocessing is 20 yr or longer.
Resumo:
There is a growing interest in using 242mAm as a nuclear fuel. The advantages of 242mAm as a nuclear fuel derive from the fact that 242mAm has the highest thermal fission cross section. The thermal capture cross section is relatively low and the number of neutrons per thermal fission is high. These nuclear properties make it possible to obtain nuclear criticality with ultra-thin fuel elements. The possibility of having ultra-thin fuel elements enables the use of these fission products directly, without the necessity of converting their energy to heat, as is done in conventional reactors. There are three options of using such highly energetic and highly ionized fission products. 1. Using the fission products themselves for ionic propulsion. 2. Using the fission products in an MHD generator, in order to obtain electricity directly. 3. Using the fission products to heat a gas up to a high temperature for propulsion purposes. In this work, we are not dealing with a specific reactor design, but only calculating the minimal fuel elements' thickness and the energy of the fission products emerging from these fuel elements. It was found that it is possible to design a nuclear reactor with a fuel element of less than 1 μm of 242mAm. In such a fuel element, 90% of the fission products' energy can escape.
Resumo:
A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and incore and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme.
Resumo:
The paper shows that generating cross sections using three-dimensional geometry and application of axial discontinuity factors are essential requirements for obtaining accurate prediction of criticality and zone average reaction rates in highly heterogeneous RBWR-type systems using computer codes based on diffusion theory approximation. The same methodology as presented here will be used to generate discontinuity factors for each axial interface between fuel assembly zones to ensure preservation of reaction rates in each zone and global multiplication factor. The use of discontinuity factors and three-dimensional cross sections may allow for a coarser energy group structure which is desirable to simplify and speed up transient calculations.
Resumo:
This scoping study proposes using mixed nitride fuel in Pu-based high conversion LWR designs in order to increase the breeding ratio. The higher density fuel reduces the hydrogen-to-heavy metal ratio in the reactor which results in a harder spectrum in which breeding is more effective. A Resource-renewable Boiling Water Reactor (RBWR) assembly was modeled in MCNP to demonstrate this effect in a typical high conversion LWR design. It was determined that changing the fuel from (U,TRU)O2 to (U,TRU)N in the assembly can increase its fissile inventory ratio (fissile Pu mass divided by initial fissile Pu mass) from 1.04 to up to 1.17. © 2011 Elsevier Ltd. All rights reserved.