941 resultados para High Temperature Superconductors
Resumo:
Heat stability was evaluated in bulk raw milk, collected throughout the year and subjected to ultra-high temperature (UHT) or in-container sterilisation, with and without added calcium chloride (2 mM), disodium hydrogen phosphate (DSHP, 10 mM) and trisodium citrate (TSC, 10 mM). More sediment was observed following in-container sterilisation (0.24%) compared with UHT (0.19%). Adding CaCl2 made the milk more unstable to UHT than to in-container sterilisation, while adding DSHP and TSC made the milk more unstable during in-container sterilisation than to UHT processing, although TSC addition increased the sediment formed by UHT processing. Better heat stability was observed in autumn and winter than in spring and summer following UHT. However, following in-container sterilisation, samples with added stabilising salts showed significantly improved heat stability in autumn, whereas with added CaCl2, the best heat stability was observed in spring. No correlation was found between urea and heat stability. DSHP and TSC made the milk more unstable during in-container sterilisation than to UHT processing, although TSC addition increased the sediment formed by UHT processing. Better heat stability was observed in autumn and winter than in spring and summer following UHT. However, following in-container sterilisation, samples with added stabilising salts showed significantly improved heat stability in autumn, whereas with added CaCl2, the best heat stability was observed in spring. No correlation was found between urea and heat stability.
Resumo:
The temperature dependence of anion ordering in the skutterudites CoGe1.5Q1.5 (Q=S, Te) has been investigated by powder neutron diffraction. Both materials adopt a rhombohedral structure at room temperature (space group R-3 ) in which the anions are ordered trans to each other within Ge2Q2 rings. In CoGe1.5S1.5, anion ordering is preserved up to the melting point of 950 °C. However, rhombohedral CoGe1.5Te1.5 undergoes a phase transition at 610 °C involving a change to cubic symmetry (space group Im-3). In the high-temperature modification, there is a statistical distribution of anions over the available sites within the Ge2Te2 rings. The structural transition involves a reduction in the degree of distortion of the Ge2Te2 rings which progressively transform from a rhombus to a rectangular shape. The effect of this transition on the thermoelectric properties has been investigated.
Resumo:
• Background and Aims Earlier studies have suggested that the drying conditions routinely used by genebanks may not be optimal for subsequent seed longevity. The aim of this study was to compare the effect of hot-air drying with low temperature drying on subsequent seed longevity for 20 diverse rice accessions and to consider how factors related to seed production history might influence the results. • Methods Seeds were produced according to normal regeneration procedures at IRRI. They were harvested at different times (harvest date and days after anthesis (DAA), once for each accession) and dried either in a drying room (DR; 15% RH, 15°C), or in a flat-bed heated-air batch dryer (BD; 45°C, 8 h d-1) for up to 6 daily cycles followed by drying in the DR. Relative longevity was assessed by storage at 10.9% moisture content (m.c.) and 45°C. • Key Results Initial drying in the BD resulted in significantly greater longevity compared with the DR for 14 accessions (seed lots): the period of time for viability to fall to 50% for seeds dried in the BD as a percentage of that for seeds dried throughout in the DR varied between 1.3 and 372.2% for these 14 accessions. The seed lots that responded the most were harvested earlier in the season and at higher moisture content. Drying in the BD did not reduce subsequent longevity compared with DR drying for any of the remaining accessions. • Conclusions Seeds harvested at a m.c. where, according to the moisture desorption isotherm, they could still be metabolically active (>16.2%), may be in the first stage of the post-mass maturity, desiccation phase of seed development and able to increase longevity in response to hot-air drying. The genebank standards regarding seed drying for rice and, perhaps, for other tropical species should be reconsidered.
Resumo:
We report a straightforward methodology for the fabrication of high-temperature thermoelectric (TE) modules using commercially available solder alloys and metal barriers. This methodology employs standard and accessible facilities that are simple to implement in any laboratory. A TE module formed by nine n-type Yb x Co4Sb12 and p-type Ce x Fe3CoSb12 state-of-the-art skutterudite material couples was fabricated. The physical properties of the synthesized skutterudites were determined, and the module power output, internal resistance, and thermocycling stability were evaluated in air. At a temperature difference of 365 K, the module provides more than 1.5 W cm−3 volume power density. However, thermocycling showed an increase of the internal module resistance and degradation in performance with the number of cycles when the device is operated at a hot-side temperature higher than 573 K. This may be attributed to oxidation of the skutterudite thermoelements.
Resumo:
Groundnuts cultivated in the semiarid tropics are often exposed to water stress (mid-season and end season) and high temperature (> 34 °C) during the critical stages of flowering and pod development. This study evaluated the effects of both water stress and high temperature under field conditions at ICRISAT, India. Treatments included two irrigations (full irrigation, 100 % of crop evapotranspiration; and water stress, 40 % of crop evapotranspiration), four temperature treatments from a combination of two sowing dates and heat tunnels with mean temperatures from sowing to maturity of 26.3° (T1), 27.3° (T2), 29.0° (T3) and 29.7 °C (T4) and two genotypes TMV2 and ICGS 11. The heat tunnels were capable of raising the day temperature by > 10 °C compared to ambient. During the 20-day high-temperature treatment at flowering, mean temperatures were 33.8° (T1), 41.6° (T2), 38.7° (T3) and 43.5°C (T4). The effects of water stress and high temperature were additive and temporary for both vegetative and pod yield, and disappeared as soon as high-temperature stress was removed. Water use efficiency was significantly affected by the main effects of temperature and cultivar and not by water stress treatments. Genotypic differences for tolerance to high temperature can be attributed to differences in flowering pattern, flower number, peg-set and harvest index. It can be inferred from this study that genotypes that are tolerant to water stress are also tolerant to high temperature under field conditions. In addition, genotypes with an ability to establish greater biomass and with a significantly greater partitioning of biomass to pod yield would be suitable for sustaining higher yields in semiarid tropics with high temperature and water stress.
Resumo:
The influence of different M(2+) cations on the effective magnetic anisotropy of systems composed of MFe(2)O(4) (M Fe, Co and Mn) nanoparticles was investigated. Samples were prepared by the high-temperature (538 K) solution phase reaction of Fe (acac) 3, Co (acac) 2 and Mn (acac) 2 with 1,2 octanodiol in the presence of oleic acid and oleylamine. The final particles are coated by an organic layer of oleic acid that prevents agglomeration. Transmission electron microscopy (TEM) images show that particles present near spherical form and a narrow grain size distribution, with mean diameters in the range of 4.5 - 7.6 nm. Powder samples were analyzed by ac susceptibility and Mossbauer measurements, and K(eff) for all samples was evaluated using both techniques, showing a strong dependence on the nature of the divalent cation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The hysteretic behavior of mechanically alloyed nanocomposites FeCo + MnO was studied at high temperatures. These composites present an unusual high and thermally stable coercivity, compared to FeCo milled at equal conditions. Coercivity enhancement was observed in hysteresis loops obtained between room temperature and 750 K. It is attributed to the isolation of the FeCo ferromagnetic particles by the paramagnetic MnO (T(N) = 120 K). The M(rev)(M(irr))(H) curves are clearly linear for the composite, indicating that coherent rotation is the reversal mechanism in these materials. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Natural silicate mineral of zoisite, Ca(2)Al(3)(SiO(4))(Si(2)O(7))O(OH), has been investigated concerning gamma-radiation, UV-radiation and high temperature annealing effects on thermoluminescence (TL). X-ray diffraction (XRD) measurement confirmed zoisite structure and X-ray fluorescence (XRF) analysis revealed besides Si, Al and Ca that are the main crystal components, other oxides of Fe, Mg, Cr, Na, K, Sr, Ti, Ba and Mn which are present in more than 0.05 wt%. The TL glow curve of natural sample contains (130-150), (340-370) and (435-475)degrees C peaks. Their shapes indicated a possibility that they are result of composition of two or more peaks strongly superposed, a fact confirmed by deconvolution method. Once pre-annealed at 600 degrees C for 1 h, the shape of the glow curves change and the zoisite acquires high sensitivity. Several peaks between 100 and 400 degrees C appear superposed, and the high temperature peak around 435 degrees C cannot be seen. The ultraviolet radiation, on the other hand, produces one TL peak around 130 degrees C and the second one around 200 degrees C and no more. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Dielectric properties of BaTiO(3) ferroelectric ceramics were studied over wide frequency and temperature ranges. The materials showed complex dielectric behaviors, which included an anomalous increase of permittivity towards higher temperatures. Important, this property tended however to saturate to values that varied with grain-boundary density. Application of impedance spectroscopy and consideration of the series-layer model allowed a coherent discussion of these and other interesting observations from this work. In particular, analysis of the relationship existing in this model between macroscopic and microscopic dielectric properties rendered possible to account for grain vs. grain-boundary dielectric behaviors, in harmony with microstructure features, and to know the dielectric anomaly strength to be in fact expected from grain boundaries in such polycrystalline materials. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we use Nuclear Magnetic Resonance (NMR) to write electronic states of a ferromagnetic system into high-temperature paramagnetic nuclear spins. Through the control of phase and duration of radio frequency pulses, we set the NMR density matrix populations, and apply the technique of quantum state tomography to experimentally obtain the matrix elements of the system, from which we calculate the temperature dependence of magnetization for different magnetic fields. The effects of the variation of temperature and magnetic field over the populations can be mapped in the angles of spin rotations, carried out by the RF pulses. The experimental results are compared to the Brillouin functions of ferromagnetic ordered systems in the mean field approximation for two cases: the mean field is given by (i) B = B(0) + lambda M and (ii) B = B(0) + lambda M + lambda`M(3), where B(0) is the external magnetic field, and lambda, lambda` are mean field parameters. The first case exhibits second order transition, whereas the second case has first order transition with temperature hysteresis. The NMR simulations are in good agreement with the magnetic predictions.
Resumo:
The studied sector of the central Ribeira Fold Belt (SE Brazil) comprises metatexites, diatexites, charnockites and blastomylonites. This study integrates petrological and thermochronological data in order to constrain the thermotectonic and geodynamic evolution of this Neoproterozoic-Ordovician mobile belt during Western Gondwana amalgamation. New data indicate that after an earlier collision stage at similar to 610 Ma (zircon, U-Pb age), peak metamorphism and lower crust partial melting, coeval with the main regional high grade D(1) thrust deformation, occurred at 572-562 Ma (zircon, U-Pb ages). The overall average cooling rate was low (<5 degrees C/Ma) from 750 to 250 degrees C (at similar to 455 Ma; biotite-WR Rb-Sr age), but disparate cooling paths indicate differential uplift between distinct lithotypes: (a) metatexites and blastomylonites show a overall stable 3-5 degrees C/Ma cooling rate; (b) charnockites and associated rocks remained at T>650 degrees C during sub-horizontal D(2) shearing until similar to 510-470 Ma (garnet-WR Sm-Nd ages) (1-2 degrees C/Ma), being then rapidly exhumed/cooled (8-30 degrees C/Ma) during post-orogenic D(3) deformation with late granite emplacement at similar to 490 Ma (zircon, U-Pb age). Cooling rates based on garnet-biotite Fe-Mg diffusion are broadly consistent with the geochronological cooling rates: (a) metatexites were cooled faster at high temperatures (6 degrees C/Ma) and slowly at low temperatures (0.1 degrees C/Ma), decreasing cooling rates with time; (b) charnockites show low cooling rates (2 degrees C/Ma) near metamorphic peak conditions and high cooling rates (120 degrees C/Ma) at lower temperatures, increasing cooling rates during retrogression. The charnockite thermal evolution and the extensive production of granitoid melts in the area imply that high geothermal gradients were sustained fora long period of time (50-90 Ma). This thermal anomaly most likely reflects upwelling of asthenospheric mantle and magma underplating coupled with long-term generation of high HPE (heat producing elements) granitoids. These factors must have sustained elevated crustal geotherms for similar to 100 Ma, promoting widespread charnockite generation at middle to lower crustal levels. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work is to address the activation process of a high temperature shift (HTS) catalyst, composed of Fe2O3/Cr2O3/CuO, by analyzing it before activation (HTS-V) and after activation (HTS-A) using complementary characterization techniques. The textural and morphological characterizations were done by transmission electron rnicroscopy (TEM) and nitrogen physisorption at 77 K; crystallographic structure was confirmed by X-ray diffraction (XRD); electronic structure was analyzed by X-ray absorption spectroscopy (XAS) and the chemical composition of the catalyst`s surface was obtained by X-ray photoelectron spectroscopy (XPS). The investigation pointed out that the HTS-V catalyst presents good textural and morphological properties, which are not deeply affected by the activation process (sample HTS-A). The iron oxide phase in the HTS-V catalyst is hematite whereas in HTS-A catalyst is magnetite with Fe2+/Fe3+ ratio close to the expected value (0.5). For both samples, the Cr ions seem to be incorporated in the iron oxide lattice with higher concentration at particle surface. In the HTS-V catalyst, the Cu ions have oxidation number II and occupy in average distorted octahedral sites; after the activation, the Cu ions are partially reduced, suggesting that the reduction of the Cu species is complex. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The performance of La(2-x)Ce(x)Cu(1-y)Zn(y)O(4) perovskites as catalysts for the high temperature water-gas shift reaction (H T-W G S R) was investigated. The catalysts were characterized by EDS, XRD, BET surface area, TPR, and XANES. The results showed that all the perovskites exhibited the La(2)CuO(4) orthorhombic structure, so the Pechini method is suitable for the preparation of pure perovskite. However, the La(1.90)Ce(0.10)CuO(4) perovskite alone, when calcined at 350/700 degrees C, also showed a (La(0.935)Ce(0.065))(2)CuO(4) perovskite with tetragonal structure, which produced a surface area higher than the other perovskites. The perovskites that exhibited the best catalytic performance were those calcined at 350/700 degrees C and, among these, La(1.90)Ce(0.10)CuO(4) was outstanding, probably because of the high surface area associated with the presence of the (La(0.935)Ce(0.065))(2)CuO(4) perovskite with tetragonal structure and orthorhombic La(2)CuO(4) phase.
Resumo:
A solar thermal system with seasonal borehole storage for heating of a residential area in Anneberg, Sweden, approximately 10 km north of Stockholm, has been in operation since late 2002. Originally, the project was part of the EU THERMIE project “Large-scale Solar Heating Systems for Housing Developments” (REB/0061/97) and was the first solar heating plant in Europe with borehole storage in rock not utilizing a heat pump. Earlier evaluations of the system show lower performance than the preliminary simulation study, with residents complaining of a high use of electricity for domestic hot water (DHW) preparation and auxiliary heating. One explanation mentioned in the earlier evaluations is that the borehole storage had not yet reached “steady state” temperatures at the time of evaluation. Many years have passed since then and this paper presents results from a new evaluation. The main aim of this work is to evaluate the current performance of the system based on several key figures, as well as on system function based on available measurement data. The analysis show that though the borehole storage now has reached a quasi-steady state and operates as intended, the auxiliary electricity consumption is much higher than the original design values largely due to high losses in the distribution network, higher heat loads as well as lower solar gains.