853 resultados para Hierarchical logistic model
Resumo:
In this paper, we develop Bayesian hierarchical distributed lag models for estimating associations between daily variations in summer ozone levels and daily variations in cardiovascular and respiratory (CVDRESP) mortality counts for 19 U.S. large cities included in the National Morbidity Mortality Air Pollution Study (NMMAPS) for the period 1987 - 1994. At the first stage, we define a semi-parametric distributed lag Poisson regression model to estimate city-specific relative rates of CVDRESP associated with short-term exposure to summer ozone. At the second stage, we specify a class of distributions for the true city-specific relative rates to estimate an overall effect by taking into account the variability within and across cities. We perform the calculations with respect to several random effects distributions (normal, t-student, and mixture of normal), thus relaxing the common assumption of a two-stage normal-normal hierarchical model. We assess the sensitivity of the results to: 1) lag structure for ozone exposure; 2) degree of adjustment for long-term trends; 3) inclusion of other pollutants in the model;4) heat waves; 5) random effects distributions; and 6) prior hyperparameters. On average across cities, we found that a 10ppb increase in summer ozone level for every day in the previous week is associated with 1.25 percent increase in CVDRESP mortality (95% posterior regions: 0.47, 2.03). The relative rate estimates are also positive and statistically significant at lags 0, 1, and 2. We found that associations between summer ozone and CVDRESP mortality are sensitive to the confounding adjustment for PM_10, but are robust to: 1) the adjustment for long-term trends, other gaseous pollutants (NO_2, SO_2, and CO); 2) the distributional assumptions at the second stage of the hierarchical model; and 3) the prior distributions on all unknown parameters. Bayesian hierarchical distributed lag models and their application to the NMMAPS data allow us estimation of an acute health effect associated with exposure to ambient air pollution in the last few days on average across several locations. The application of these methods and the systematic assessment of the sensitivity of findings to model assumptions provide important epidemiological evidence for future air quality regulations.
Resumo:
Functional neuroimaging techniques enable investigations into the neural basis of human cognition, emotions, and behaviors. In practice, applications of functional magnetic resonance imaging (fMRI) have provided novel insights into the neuropathophysiology of major psychiatric,neurological, and substance abuse disorders, as well as into the neural responses to their treatments. Modern activation studies often compare localized task-induced changes in brain activity between experimental groups. One may also extend voxel-level analyses by simultaneously considering the ensemble of voxels constituting an anatomically defined region of interest (ROI) or by considering means or quantiles of the ROI. In this work we present a Bayesian extension of voxel-level analyses that offers several notable benefits. First, it combines whole-brain voxel-by-voxel modeling and ROI analyses within a unified framework. Secondly, an unstructured variance/covariance for regional mean parameters allows for the study of inter-regional functional connectivity, provided enough subjects are available to allow for accurate estimation. Finally, an exchangeable correlation structure within regions allows for the consideration of intra-regional functional connectivity. We perform estimation for our model using Markov Chain Monte Carlo (MCMC) techniques implemented via Gibbs sampling which, despite the high throughput nature of the data, can be executed quickly (less than 30 minutes). We apply our Bayesian hierarchical model to two novel fMRI data sets: one considering inhibitory control in cocaine-dependent men and the second considering verbal memory in subjects at high risk for Alzheimer’s disease. The unifying hierarchical model presented in this manuscript is shown to enhance the interpretation content of these data sets.
Resumo:
The purpose of this study is to develop statistical methodology to facilitate indirect estimation of the concentration of antiretroviral drugs and viral loads in the prostate gland and the seminal vesicle. The differences in antiretroviral drug concentrations in these organs may lead to suboptimal concentrations in one gland compared to the other. Suboptimal levels of the antiretroviral drugs will not be able to fully suppress the virus in that gland, lead to a source of sexually transmissible virus and increase the chance of selecting for drug resistant virus. This information may be useful selecting antiretroviral drug regimen that will achieve optimal concentrations in most of male genital tract glands. Using fractionally collected semen ejaculates, Lundquist (1949) measured levels of surrogate markers in each fraction that are uniquely produced by specific male accessory glands. To determine the original glandular concentrations of the surrogate markers, Lundquist solved a simultaneous series of linear equations. This method has several limitations. In particular, it does not yield a unique solution, it does not address measurement error, and it disregards inter-subject variability in the parameters. To cope with these limitations, we developed a mechanistic latent variable model based on the physiology of the male genital tract and surrogate markers. We employ a Bayesian approach and perform a sensitivity analysis with regard to the distributional assumptions on the random effects and priors. The model and Bayesian approach is validated on experimental data where the concentration of a drug should be (biologically) differentially distributed between the two glands. In this example, the Bayesian model-based conclusions are found to be robust to model specification and this hierarchical approach leads to more scientifically valid conclusions than the original methodology. In particular, unlike existing methods, the proposed model based approach was not affected by a common form of outliers.
Resumo:
Between 1966 and 2003, the Golden-winged Warbler (Vermivora chrysoptera) experienced declines of 3.4% per year in large parts of the breeding range and has been identified by Partners in Flight as one of 28 land birds requiring expedient action to prevent its continued decline. It is currently being considered for listing under the Endangered Species Act. A major step in advancing our understanding of the status and habitat preferences of Golden-winged Warbler populations in the Upper Midwest was initiated by the publication of new predictive spatially explicit Golden-winged Warbler habitat models for the northern Midwest. Here, I use original data on observed Golden-winged Warbler abundances in Wisconsin and Minnesota to compare two population models: the hierarchical spatial count (HSC) model with the Habitat Suitability Index (HSI) model. I assessed how well the field data compared to the model predictions and found that within Wisconsin, the HSC model performed slightly better than the HSI model whereas both models performed relatively equally in Minnesota. For the HSC model, I found a 10% error of commission in Wisconsin and a 24.2% error of commission for Minnesota. Similarly, the HSI model has a 23% error of commission in Minnesota; in Wisconsin due to limited areas where the HSI model predicted absences, there was incomplete data and I was unable to determine the error of commission for the HSI model. These are sites where the model predicted presences and the Golden-winged Warbler did not occur. To compare predicted abundance from the two models, a 3x3 contingency table was used. I found that when overlapped, the models do not complement one another in identifying Golden-winged Warbler presences. To calculate discrepancy between the models, the error of commission shows that the HSI model has only a 6.8% chance of correctly classifying absences in the HSC model. The HSC model has only 3.3% chance of correctly classifying absences in the HSI model. These findings highlight the importance of grasses for nesting, shrubs used for cover and foraging, and trees for song perches and foraging as key habitat characteristics for breeding territory occupancy by singing males.
Resumo:
OBJECTIVES: This paper is concerned with checking goodness-of-fit of binary logistic regression models. For the practitioners of data analysis, the broad classes of procedures for checking goodness-of-fit available in the literature are described. The challenges of model checking in the context of binary logistic regression are reviewed. As a viable solution, a simple graphical procedure for checking goodness-of-fit is proposed. METHODS: The graphical procedure proposed relies on pieces of information available from any logistic analysis; the focus is on combining and presenting these in an informative way. RESULTS: The information gained using this approach is presented with three examples. In the discussion, the proposed method is put into context and compared with other graphical procedures for checking goodness-of-fit of binary logistic models available in the literature. CONCLUSION: A simple graphical method can significantly improve the understanding of any logistic regression analysis and help to prevent faulty conclusions.
Resumo:
Tissue turnover, regeneration, and repair take place throughout life. Stem cells are key players in these processes. The characteristics and niches of the stem cell populations in different tissues, and even in related tissues, vary extensively. In this review, stem cell differentiation and stem cell contribution to tissue maintenance and regeneration is compared in the epithelia of the skin, the cornea, the lung, and the intestine. A hierarchical model for adult stem cells is proposed, based on the potency of stem cell subpopulations in a specific tissue. The potency is defined in terms of the maintenance, the repair, and the regeneration of the tissue. The niche supplies cues to maintain the specific stem cell potency.
Resumo:
PURPOSE To explore whether population-related pharmacogenomics contribute to differences in patient outcomes between clinical trials performed in Japan and the United States, given similar study designs, eligibility criteria, staging, and treatment regimens. METHODS We prospectively designed and conducted three phase III trials (Four-Arm Cooperative Study, LC00-03, and S0003) in advanced-stage, non-small-cell lung cancer, each with a common arm of paclitaxel plus carboplatin. Genomic DNA was collected from patients in LC00-03 and S0003 who received paclitaxel (225 mg/m(2)) and carboplatin (area under the concentration-time curve, 6). Genotypic variants of CYP3A4, CYP3A5, CYP2C8, NR1I2-206, ABCB1, ERCC1, and ERCC2 were analyzed by pyrosequencing or by PCR restriction fragment length polymorphism. Results were assessed by Cox model for survival and by logistic regression for response and toxicity. Results Clinical results were similar in the two Japanese trials, and were significantly different from the US trial, for survival, neutropenia, febrile neutropenia, and anemia. There was a significant difference between Japanese and US patients in genotypic distribution for CYP3A4*1B (P = .01), CYP3A5*3C (P = .03), ERCC1 118 (P < .0001), ERCC2 K751Q (P < .001), and CYP2C8 R139K (P = .01). Genotypic associations were observed between CYP3A4*1B for progression-free survival (hazard ratio [HR], 0.36; 95% CI, 0.14 to 0.94; P = .04) and ERCC2 K751Q for response (HR, 0.33; 95% CI, 0.13 to 0.83; P = .02). For grade 4 neutropenia, the HR for ABCB1 3425C-->T was 1.84 (95% CI, 0.77 to 4.48; P = .19). CONCLUSION Differences in allelic distribution for genes involved in paclitaxel disposition or DNA repair were observed between Japanese and US patients. In an exploratory analysis, genotype-related associations with patient outcomes were observed for CYP3A4*1B and ERCC2 K751Q. This common-arm approach facilitates the prospective study of population-related pharmacogenomics in which ethnic differences in antineoplastic drug disposition are anticipated.
Resumo:
OBJECTIVE: Hierarchical modeling has been proposed as a solution to the multiple exposure problem. We estimate associations between metabolic syndrome and different components of antiretroviral therapy using both conventional and hierarchical models. STUDY DESIGN AND SETTING: We use discrete time survival analysis to estimate the association between metabolic syndrome and cumulative exposure to 16 antiretrovirals from four drug classes. We fit a hierarchical model where the drug class provides a prior model of the association between metabolic syndrome and exposure to each antiretroviral. RESULTS: One thousand two hundred and eighteen patients were followed for a median of 27 months, with 242 cases of metabolic syndrome (20%) at a rate of 7.5 cases per 100 patient years. Metabolic syndrome was more likely to develop in patients exposed to stavudine, but was less likely to develop in those exposed to atazanavir. The estimate for exposure to atazanavir increased from hazard ratio of 0.06 per 6 months' use in the conventional model to 0.37 in the hierarchical model (or from 0.57 to 0.81 when using spline-based covariate adjustment). CONCLUSION: These results are consistent with trials that show the disadvantage of stavudine and advantage of atazanavir relative to other drugs in their respective classes. The hierarchical model gave more plausible results than the equivalent conventional model.
Resumo:
OBJECTIVES This study sought to validate the Logistic Clinical SYNTAX (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery) score in patients with non-ST-segment elevation acute coronary syndromes (ACS), in order to further legitimize its clinical application. BACKGROUND The Logistic Clinical SYNTAX score allows for an individualized prediction of 1-year mortality in patients undergoing contemporary percutaneous coronary intervention. It is composed of a "Core" Model (anatomical SYNTAX score, age, creatinine clearance, and left ventricular ejection fraction), and "Extended" Model (composed of an additional 6 clinical variables), and has previously been cross validated in 7 contemporary stent trials (>6,000 patients). METHODS One-year all-cause death was analyzed in 2,627 patients undergoing percutaneous coronary intervention from the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) trial. Mortality predictions from the Core and Extended Models were studied with respect to discrimination, that is, separation of those with and without 1-year all-cause death (assessed by the concordance [C] statistic), and calibration, that is, agreement between observed and predicted outcomes (assessed with validation plots). Decision curve analyses, which weight the harms (false positives) against benefits (true positives) of using a risk score to make mortality predictions, were undertaken to assess clinical usefulness. RESULTS In the ACUITY trial, the median SYNTAX score was 9.0 (interquartile range 5.0 to 16.0); approximately 40% of patients had 3-vessel disease, 29% diabetes, and 85% underwent drug-eluting stent implantation. Validation plots confirmed agreement between observed and predicted mortality. The Core and Extended Models demonstrated substantial improvements in the discriminative ability for 1-year all-cause death compared with the anatomical SYNTAX score in isolation (C-statistics: SYNTAX score: 0.64, 95% confidence interval [CI]: 0.56 to 0.71; Core Model: 0.74, 95% CI: 0.66 to 0.79; Extended Model: 0.77, 95% CI: 0.70 to 0.83). Decision curve analyses confirmed the increasing ability to correctly identify patients who would die at 1 year with the Extended Model versus the Core Model versus the anatomical SYNTAX score, over a wide range of thresholds for mortality risk predictions. CONCLUSIONS Compared to the anatomical SYNTAX score alone, the Core and Extended Models of the Logistic Clinical SYNTAX score more accurately predicted individual 1-year mortality in patients presenting with non-ST-segment elevation acute coronary syndromes undergoing percutaneous coronary intervention. These findings support the clinical application of the Logistic Clinical SYNTAX score.
Resumo:
IMPORTANCE Because effective interventions to reduce hospital readmissions are often expensive to implement, a score to predict potentially avoidable readmissions may help target the patients most likely to benefit. OBJECTIVE To derive and internally validate a prediction model for potentially avoidable 30-day hospital readmissions in medical patients using administrative and clinical data readily available prior to discharge. DESIGN Retrospective cohort study. SETTING Academic medical center in Boston, Massachusetts. PARTICIPANTS All patient discharges from any medical services between July 1, 2009, and June 30, 2010. MAIN OUTCOME MEASURES Potentially avoidable 30-day readmissions to 3 hospitals of the Partners HealthCare network were identified using a validated computerized algorithm based on administrative data (SQLape). A simple score was developed using multivariable logistic regression, with two-thirds of the sample randomly selected as the derivation cohort and one-third as the validation cohort. RESULTS Among 10 731 eligible discharges, 2398 discharges (22.3%) were followed by a 30-day readmission, of which 879 (8.5% of all discharges) were identified as potentially avoidable. The prediction score identified 7 independent factors, referred to as the HOSPITAL score: h emoglobin at discharge, discharge from an o ncology service, s odium level at discharge, p rocedure during the index admission, i ndex t ype of admission, number of a dmissions during the last 12 months, and l ength of stay. In the validation set, 26.7% of the patients were classified as high risk, with an estimated potentially avoidable readmission risk of 18.0% (observed, 18.2%). The HOSPITAL score had fair discriminatory power (C statistic, 0.71) and had good calibration. CONCLUSIONS AND RELEVANCE This simple prediction model identifies before discharge the risk of potentially avoidable 30-day readmission in medical patients. This score has potential to easily identify patients who may need more intensive transitional care interventions.
Resumo:
AIMS:Duchenne muscular dystrophy (DMD) is a muscle disease with serious cardiac complications. Changes in Ca(2+) homeostasis and oxidative stress were recently associated with cardiac deterioration, but the cellular pathophysiological mechanisms remain elusive. We investigated whether the activity of ryanodine receptor (RyR) Ca(2+) release channels is affected, whether changes in function are cause or consequence and which post-translational modifications drive disease progression. METHODS AND RESULTS:Electrophysiological, imaging, and biochemical techniques were used to study RyRs in cardiomyocytes from mdx mice, an animal model of DMD. Young mdx mice show no changes in cardiac performance, but do so after ∼8 months. Nevertheless, myocytes from mdx pups exhibited exaggerated Ca(2+) responses to mechanical stress and 'hypersensitive' excitation-contraction coupling, hallmarks of increased RyR Ca(2+) sensitivity. Both were normalized by antioxidants, inhibitors of NAD(P)H oxidase and CaMKII, but not by NO synthases and PKA antagonists. Sarcoplasmic reticulum Ca(2+) load and leak were unchanged in young mdx mice. However, by the age of 4-5 months and in senescence, leak was increased and load was reduced, indicating disease progression. By this age, all pharmacological interventions listed above normalized Ca(2+) signals and corrected changes in ECC, Ca(2+) load, and leak. CONCLUSION:Our findings suggest that increased RyR Ca(2+) sensitivity precedes and presumably drives the progression of dystrophic cardiomyopathy, with oxidative stress initiating its development. RyR oxidation followed by phosphorylation, first by CaMKII and later by PKA, synergistically contributes to cardiac deterioration.
Resumo:
Information theory-based metric such as mutual information (MI) is widely used as similarity measurement for multimodal registration. Nevertheless, this metric may lead to matching ambiguity for non-rigid registration. Moreover, maximization of MI alone does not necessarily produce an optimal solution. In this paper, we propose a segmentation-assisted similarity metric based on point-wise mutual information (PMI). This similarity metric, termed SPMI, enhances the registration accuracy by considering tissue classification probabilities as prior information, which is generated from an expectation maximization (EM) algorithm. Diffeomorphic demons is then adopted as the registration model and is optimized in a hierarchical framework (H-SPMI) based on different levels of anatomical structure as prior knowledge. The proposed method is evaluated using Brainweb synthetic data and clinical fMRI images. Both qualitative and quantitative assessment were performed as well as a sensitivity analysis to the segmentation error. Compared to the pure intensity-based approaches which only maximize mutual information, we show that the proposed algorithm provides significantly better accuracy on both synthetic and clinical data.
Resumo:
In numerous intervention studies and education field trials, random assignment to treatment occurs in clusters rather than at the level of observation. This departure of random assignment of units may be due to logistics, political feasibility, or ecological validity. Data within the same cluster or grouping are often correlated. Application of traditional regression techniques, which assume independence between observations, to clustered data produce consistent parameter estimates. However such estimators are often inefficient as compared to methods which incorporate the clustered nature of the data into the estimation procedure (Neuhaus 1993).1 Multilevel models, also known as random effects or random components models, can be used to account for the clustering of data by estimating higher level, or group, as well as lower level, or individual variation. Designing a study, in which the unit of observation is nested within higher level groupings, requires the determination of sample sizes at each level. This study investigates the design and analysis of various sampling strategies for a 3-level repeated measures design on the parameter estimates when the outcome variable of interest follows a Poisson distribution. ^ Results study suggest that second order PQL estimation produces the least biased estimates in the 3-level multilevel Poisson model followed by first order PQL and then second and first order MQL. The MQL estimates of both fixed and random parameters are generally satisfactory when the level 2 and level 3 variation is less than 0.10. However, as the higher level error variance increases, the MQL estimates become increasingly biased. If convergence of the estimation algorithm is not obtained by PQL procedure and higher level error variance is large, the estimates may be significantly biased. In this case bias correction techniques such as bootstrapping should be considered as an alternative procedure. For larger sample sizes, those structures with 20 or more units sampled at levels with normally distributed random errors produced more stable estimates with less sampling variance than structures with an increased number of level 1 units. For small sample sizes, sampling fewer units at the level with Poisson variation produces less sampling variation, however this criterion is no longer important when sample sizes are large. ^ 1Neuhaus J (1993). “Estimation efficiency and Tests of Covariate Effects with Clustered Binary Data”. Biometrics , 49, 989–996^
Resumo:
Computer vision-based food recognition could be used to estimate a meal's carbohydrate content for diabetic patients. This study proposes a methodology for automatic food recognition, based on the Bag of Features (BoF) model. An extensive technical investigation was conducted for the identification and optimization of the best performing components involved in the BoF architecture, as well as the estimation of the corresponding parameters. For the design and evaluation of the prototype system, a visual dataset with nearly 5,000 food images was created and organized into 11 classes. The optimized system computes dense local features, using the scale-invariant feature transform on the HSV color space, builds a visual dictionary of 10,000 visual words by using the hierarchical k-means clustering and finally classifies the food images with a linear support vector machine classifier. The system achieved classification accuracy of the order of 78%, thus proving the feasibility of the proposed approach in a very challenging image dataset.
Resumo:
OBJECTIVES This study aimed to update the Logistic Clinical SYNTAX score to predict 3-year survival after percutaneous coronary intervention (PCI) and compare the performance with the SYNTAX score alone. BACKGROUND The SYNTAX score is a well-established angiographic tool to predict long-term outcomes after PCI. The Logistic Clinical SYNTAX score, developed by combining clinical variables with the anatomic SYNTAX score, has been shown to perform better than the SYNTAX score alone in predicting 1-year outcomes after PCI. However, the ability of this score to predict long-term survival is unknown. METHODS Patient-level data (N = 6,304, 399 deaths within 3 years) from 7 contemporary PCI trials were analyzed. We revised the overall risk and the predictor effects in the core model (SYNTAX score, age, creatinine clearance, and left ventricular ejection fraction) using Cox regression analysis to predict mortality at 3 years. We also updated the extended model by combining the core model with additional independent predictors of 3-year mortality (i.e., diabetes mellitus, peripheral vascular disease, and body mass index). RESULTS The revised Logistic Clinical SYNTAX models showed better discriminative ability than the anatomic SYNTAX score for the prediction of 3-year mortality after PCI (c-index: SYNTAX score, 0.61; core model, 0.71; and extended model, 0.73 in a cross-validation procedure). The extended model in particular performed better in differentiating low- and intermediate-risk groups. CONCLUSIONS Risk scores combining clinical characteristics with the anatomic SYNTAX score substantially better predict 3-year mortality than the SYNTAX score alone and should be used for long-term risk stratification of patients undergoing PCI.