470 resultados para Heterozygosity
Resumo:
Controversy still exists over the adaptive nature of variation of enzyme loci. In conifers, random amplified polymorphic DNAs (RAPDs) represent a class of marker loci that is unlikely to fall within or be strongly linked to coding DNA. We have compared the genetic diversity in natural populations of black spruce [Picea mariana (Mill.) B.S.P.] using genotypic data at allozyme loci and RAPD loci as well as phenotypic data from inferred RAPD fingerprints. The genotypic data for both allozymes and RAPDs were obtained from at least six haploid megagametophytes for each of 75 sexually mature individuals distributed in five populations. Heterozygosities and population fixation indices were in complete agreement between allozyme loci and RAPD loci. In black spruce, it is more likely that the similar levels of variation detected at both enzyme and RAPD loci are due to such evolutionary forces as migration and the mating system, rather than to balancing selection and overdominance. Furthermore, we show that biased estimates of expected heterozygosity and among-population differentiation are obtained when using allele frequencies derived from dominant RAPD phenotypes.
Resumo:
Deletion of the short arm of human chromosome 1 is the most common cytogenetic abnormality observed in neuroblastoma. To characterize the region of consistent deletion, we performed loss of heterozygosity (LOH) studies on 122 neuroblastoma tumor samples with 30 distal chromosome 1p polymorphisms. LOH was detected in 32 of the 122 tumors (26%). A single region of LOH, marked distally by D1Z2 and proximally by D1S228, was detected in all tumors demonstrating loss. Also, cells from a patient with a constitutional deletion of 1p36, and from a neuroblastoma cell line with a small 1p36 deletion, were analyzed by fluorescence in situ hybridization. Cells from both sources had interstitial deletions of 1p36.2-36.3 which overlapped the consensus region of LOH defined by the tumors. Interstitial deletion in the constitutional case was confirmed by allelic loss studies using the panel of polymorphic markers. Four proposed candidate genes--DAN, ID3 (heir-1), CDC2L1 (p58), and TNFR2--were shown to lie outside of the consensus region of allelic loss, as defined by the above deletions. These results more precisely define the location of a neuroblastoma suppressor gene within 1p36.2-36.3, eliminating 33 centimorgans of proximal 1p36 from consideration. Furthermore, a consensus region of loss, which excludes the four leading candidate genes, was found in all tumors with 1p36 LOH.
Resumo:
Translocations involving chromosome band 11q23, found in 5-10% of human acute leukemias, disrupt the ALL-1 gene. This gene is fused by reciprocal translocation with a variety of other genes in acute lymphoblastic and myelogenous leukemias, and it undergoes self-fusion in acute myeloid leukemias with normal karyotype or trisomy 11. Here we report an alteration of the ALL-1 gene in a gastric carcinoma cell line (Mgc80-3). Characterization of this rearrangement revealed a three-way complex translocation, involving chromosomes 1 and 11, resulting in a partial duplication of the ALL-1 gene. Sequencing of reverse transcription-PCR products and Northern blot analysis showed that only the partially duplicated ALL-1 gene was transcribed, producing an mRNA with exon 8 fused to exon 2. This report of ALL-1 gene rearrangement in a solid tumor suggests that ALL-1 plays a role in the pathogenesis of some solid malignancies. The absence of the normal transcript in this cell line, in association with the loss-of-heterozygosity studies on chromosome 11q23 seen in solid tumors, suggests that ALL-1 is involved in tumorigenesis by a loss-of-function mechanism.
Resumo:
We have identified a naturally occurring mutation in the promoter of the lipoprotein lipase (LPL) gene. One of 20 patients with familial combined hyperlipidemia (FCHL) and reduced levels of postheparin plasma LPL activity was found to be a heterozygote carrier of this mutation. The mutation, a T-->C substitution at nt -39, occurred in the binding site of the transcription factor Oct-1. As a result, the transcriptional activity of the mutant promoter was < 15% of wild type, as determined by transfection studies in the human macrophage-like cell line THP-1. This decrease in promoter activity was observed in undifferentiated as well as in phorbol ester-differentiated THP-1 cells. Furthermore, the inductive effect of elevating the levels of intracellular cAMP was equally reduced. This mutation was not present among 20 FCHL patients with normal plasma LPL levels nor has it been reported among individuals with familial LPL deficiency. Thus, heterozygosity for LPL promoter mutations may be one of several factors that contribute to the etiology of FCHL.
Resumo:
Survival, T-cell functions, and postmortem histopathology were studied in H-2 congenic strains of mice bearing H-2b, H-2k, and H-2d haplotypes. Males lived longer than females in all homozygous and heterozygous combinations except for H-2d homozygotes, which showed no differences between males and females. Association of heterozygosity with longer survival was observed only with H-2b/H-2b and H-2b/H-2d mice. Analysis using classification and regression trees (CART) showed that both males and females of H-2b homozygous and H-2k/H-2b mice had the shortest life-span of the strains studied. In histopathological analyses, lymphomas were noted to be more frequent in females, while hemangiosarcomas and hepatomas were more frequent in males. Lymphomas appeared earlier than hepatomas or hemangiosarcomas. The incidence of lymphomas was associated with the H-2 haplotype--e.g., H-2b homozygous mice had more lymphomas than did mice of the H-2d haplotype. More vigorous T-cell function was maintained with age (27 months) in H-2d, H-2b/H-2d, and H-2d/H-2k mice as compared with H-2b, H-2k, and H-2b/H-2k mice, which showed a decline of T-cell responses with age.
Resumo:
Ceruloplasmin is an abundant alpha 2-serum glycoprotein that contains 95% of the copper found in the plasma of vertebrate species. We report here on the identification of a genetic defect in the ceruloplasmin gene in a patient previously noted to have a total absence of circulating serum ceruloplasmin in association with late-onset retinal and basal ganglia degeneration. In this patient T2 (transverse relaxation time)-weighted magnetic resonance imaging of the brain revealed basal ganglia densities consistent with iron deposition, and liver biopsy confirmed the presence of excess iron. Although Southern blot analysis of the patient's DNA was normal, PCR amplification of 18 of the 19 exons composing the human ceruloplasmin gene revealed a distinct size difference in exon 7. DNA sequence analysis of this exon revealed a 5-bp insertion at amino acid 410, resulting in a frame-shift mutation and a truncated open reading frame. The validity of this mutation was confirmed by analysis of DNA from the patient's daughter, which revealed heterozygosity for this same 5-bp insertion. The presence of this mutation in conjunction with the clinical and pathologic findings demonstrates an essential role for ceruloplasmin in human biology and identifies aceruloplasminemia as an autosomal recessive disorder of iron metabolism. These findings support previous studies that identified ceruloplasmin as a ferroxidase and are remarkably consistent with recent studies on the essential role of a homologous copper oxidase in iron metabolism in yeast. The clinical and laboratory findings suggest that additional patients with movement disorders and nonclassical Wilson disease should be examined for ceruloplasmin gene mutations.
Resumo:
Entre as muitas aplicações das tecnologias de identificação biológica humana, estão as finalidades forenses. O objetivo desta pesquisa foi verificar frequências alélicas de Short Tandem Repeat (STR) e os parâmetros estatísticos de interesse em genética de populações e forense para desenvolver o primeiro banco de dados populacional de DNA na Faculdade de Odontologia de Bauru, Universidade de São Paulo, (FOB/USP) para futuros usos forenses. Frequências alélicas de 15 locos autossômicos e do marcador de gênero amelogenina foram determinadas utilizando amostras de 200 μL de saliva doados por 296 alunos de graduação da FOB/USP, com idade ≥ 18 anos, após aprovação ética. Os testes laboratoriais foram feitos com kits comerciais. Resultados e parâmetros estatísticos foram obtidos por meio de programas clássicos: GeneMapper-ID-X, MS Excel 2002 versão 10.6871.6870, GenAlEx 6.5 e Arlequin 3.5, comparando quatro populações (brasileira, portuguesa, norte-americana e a população deste estudo). Os locos mais polimórficos foram D18S51 (17 alelos) e FGA (15 alelos), seguidos pelo D21S11 (13 alelos) e os menos polimórficos foram D16S539 e TH01 (7 alelos cada). A análise comparativa com amostra da população brasileira proveniente de estudos anteriores (n > 100.000) pelo teste goodness of fit X2 index não mostrou diferenças significativas entre estes grupos (p = 0,9999). Outros parâmetros estatísticos foram calculados comparando as populações: local (deste estudo), portuguesa e norte-americana. A análise de variância molecular (AMOVA) entre as três populações, entre as pessoas da mesma população e para cada pessoa de cada população mostrou que existe uma elevada variância individual (99%), que esta variância é mantida uniformemente entre as pessoas da mesma amostra/região (1%) e entre as três populações estudadas (0%). O estudo confirmou o elevado grau de polimorfismo e a alta heterozigosidade (96,5%) da população. Houve diferença significativa quanto ao gênero (79,7% mulheres) quando comparado à população brasileira em geral (50,4%), explicada pelas características do corpo discente da FOB/USP composto por 80,6% de pessoas do gênero feminino. Interessante foi a observação de uma microvariante alélica no loco D18S51, fora da escada padrão e da escala de abrangência do kit, correspondente ao alelo 29, ainda não definida na base de dados internacional (STRBase, atualizada em 07/08/2015). Esta microvariante deverá ser confirmada por testes familiares e sequenciamento de DNA para verificar a possibilidade de outra ocorrência familiar ou duplicação de nucleotídeos. No futuro, os dados obtidos neste estudo devem ser incorporados ao banco de dados da população brasileira e podem ser considerados como referência genética da população regional, ajudando a elucidar casos forenses. Após a confirmação, a potencial nova microvariante alélica contribuirá para a base de dados internacional STRBase.
Resumo:
Centrioles organize the centrosome, and accurate control of their number is critical for the maintenance of genomic integrity. Centrioles duplicate once per cell cycle, and duplication is coordinated by Polo-like kinase 4 (Plk4). We previously demonstrated that Plk4 accumulation is autoregulated by its own kinase activity. However, loss of heterozygosity of Plk4 in mouse embryonic fibroblasts has been proposed to cause cytokinesis failure as a primary event, leading to centrosome amplification and gross chromosomal abnormalities. Using targeted gene disruption, we show that human epithelial cells with one inactivated Plk4 allele undergo neither cytokinesis failure nor increase in centrosome amplification. Plk4 is shown to localize exclusively at the centrosome, with none in the spindle midbody. Substantial depletion of Plk4 by small interfering RNA leads to loss of centrioles and subsequent spindle defects that lead to a modest increase in the rate of cytokinesis failure. Therefore, Plk4 is a centriole-localized kinase that does not directly regulate cytokinesis.
Resumo:
Introdution: Haemochromatosis-type IV, the ferroportin disease, is characterized by an autosomal-dominant transmission and early iron accumulation in macrophages. It is caused by mutations in the transmembrane iron exporter protein ferroportin1 (SLC40A1 gene). In form A (classic), ferroportin loss of function mutants are unable to export iron from cells leading to cellular iron accumulation with decreased availability of iron for serum transferrin (TS). We present a Portuguese rare clinical case of HH-IV. Materials and Methods: A 41-year-old woman with hyperferritinemia and normal TS. Causes of hyperferritinemia (inflammation, chronic alcohol consumption, metabolic syndrome, cell necrosis, non-alcoholic fatty liver disease and aceruloplasminemia) were assessed. Liver iron, evaluated by magnetic resonance imaging (MRI) was carried out. Screening for mutation in HFE and SCL40A1 genes were performed by Sanger sequencing. Baseline: Ferritin:708ng/ml; TS: 27%; MRI:85µmol/g; Hb:13,6g/dl. Therapy: weekly 450ml Therapeutic Phlebotomies (TP) until ferritin≤50ng/ml. Results: Hyperferritinemia comorbidities and common genetic mutations for haemochromatosis were negative. However, sequencing of the patient SLC40A1 gene has revealed the presence in heterozygosity of the variant c.238G>A; p.Gly80Ser. Due to low tolerance to TP, we adopted smaller phlebotomies every three weeks. Conclusion: This patient has a rare autosomal-dominant Ferroportin disease due to a mutated ferroportin which is predicted to be defective in iron cellular export. In agreement, she presents hyperferritinemia, with normal TS and liver iron overload. The genotype/phenotype association allowed to diagnosis this rare FD case. Although a mild form A, we decided to start TP. Her father also has been treated for iron overload.
Resumo:
Human pyruvate dehydrogenase complex (PDC) catalyzes a key step in the generation of cellular energy and is composed by three catalytic elements (E1, E2, E3), one structural subunit (E3-binding protein), and specific regulatory elements, phosphatases and kinases (PDKs, PDPs). The E1α subunit exists as two isoforms encoded by different genes: PDHA1 located on Xp22.1 and expressed in somatic tissues, and the intronless PDHA2 located on chromosome 4 and only detected in human spermatocytes and spermatids. We report on a young adult female patient who has PDC deficiency associated with a compound heterozygosity in PDHX encoding the E3-binding protein. Additionally, in the patient and in all members of her immediate family, a full-length testis-specific PDHA2 mRNA and a 5′UTR-truncated PDHA1 mRNA were detected in circulating lymphocytes and cultured fibroblasts, being bothmRNAs translated into full-length PDHA2 and PDHA1 proteins, resulting in the co-existence of both PDHA isoforms in somatic cells.Moreover, we observed that DNA hypomethylation of a CpG island in the coding region of PDHA2 gene is associatedwith the somatic activation of this gene transcription in these individuals. This study represents the first natural model of the de-repression of the testis-specific PDHA2 gene in human somatic cells, and raises some questions related to the somatic activation of this gene as a potential therapeutic approach for most forms of PDC deficiency.
Resumo:
Work performed at the University of Rochester.
Resumo:
To examine the effects of recent habitat fragmentation, we assayed genetic diversity in a rain forest endemic lizard, the prickly forest skink (Gnypetoscincus queenslandiae), from seven forest fragments and five sites in continuous forest on the Atherton tableland of northeastern Queensland, Australia. The rain forest in this region was fragmented by logging and clearing for dairy farms in the early 1900s and most forest fragments studied have been isolated for 50-80 years or nine to 12 skink generations. We genotyped 411 individuals at nine microsatellite DNA loci and found fewer alleles per locus in prickly forest skinks from small rain forest fragments and a lower ratio of allele number to allele size range in forest fragments than in continuous forest, indicative of a decrease in effective population size. In contrast, and as expected for populations with small neighbourhood sizes, neither heterozygosity nor variance in allele size differed between fragments and sites in continuous forests. Considering measures of among population differentiation, there was no increase in F-ST among fragments and a significant isolation by distance pattern was identified across all 12 sites. However, the relationship between genetic (F-ST) and geographical distance was significantly stronger for continuous forest sites than for fragments, consistent with disruption of gene flow among the latter. The observed changes in genetic diversity within and among populations are small, but in the direction predicted by the theory of genetic erosion in recently fragmented populations. The results also illustrate the inherent difficulty in detecting genetic consequences of recent habitat fragmentation, even in genetically variable species, and especially when effective population size and dispersal rates are low.
Resumo:
Genetic diversity and population structure were investigated across the core range of Tasmanian devils (Sarcophilus laniarius; Dasyuridae), a wide-ranging marsupial carnivore restricted to the island of Tasmania. Heterozygosity (0.386-0.467) and allelic diversity (2.7-3.3) were low in all subpopulations and allelic size ranges were small and almost continuous, consistent with a founder effect. Island effects and repeated periods of low population density may also have contributed to the low variation. Within continuous habitat, gene flow appears extensive up to 50 km (high assignment rates to source or close neighbour populations; nonsignificant values of pairwise F-ST), in agreement with movement data. At larger scales (150-250 km), gene flow is reduced (significant pairwise F-ST) but there is no evidence for isolation by distance. The most substantial genetic structuring was observed for comparisons spanning unsuitable habitat, implying limited dispersal of devils between the well-connected, eastern populations and a smaller northwestern population. The genetic distinctiveness of the northwestern population was reflected in all analyses: unique alleles; multivariate analyses of gene frequency (multidimensional scaling, minimum spanning tree, nearest neighbour); high self-assignment (95%); two distinct populations for Tasmania were detected in isolation by distance and in Bayesian model-based clustering analyses. Marsupial carnivores appear to have stronger population subdivisions than their placental counterparts.
Resumo:
Background and aim: E-cadherin binds to beta-catenin to form the cadherin/catenin complex required for strong cell adhesion. Inactivation of this complex in tumors facilitates invasion into surrounding tissues. Alterations of both proteins have been reported in hepatocellular carcinomas (HCC). However, the interactions between E-cadherin and beta-catenin in HCC from different geographical groups have not been explored. The aim of the present study was to assess the role of E-cadherin and beta-catenin in Australian and South African patients with HCC. Methods: DNA was extracted from malignant and non-malignant liver tissue from 37 Australian and 24 South African patients, and from histologically normal liver from 20 transplant donors. Chromosomal instability at 16q22, promoter methylation at E-cadherin, beta-catenin mutations and E-cadherin and beta-catenin protein expression was assessed using loss of heterozygosity, methylation-specific polymerase chain reaction, denaturing high-performance liquid chromatography and immunohistochemistry, respectively. Results: Loss of heterozygosity at 16q22 was prevalent in South African HCC patients (50%vs 11%; P < 0.05, chi(2)). In contrast, E-cadherin promoter hypermethylation was common in Australian cases in both malignant (30%vs 13%; P = not significant, chi(2)) and non-malignant liver (57%vs 8%, respectively, P < 0.001, chi(2)). Methylation of non-malignant liver was more likely to be detected in patients over the age of 50 years (P < 0.001, chi(2)), the overall mean age for our cohort of patients. Only one beta-catenin mutation was identified. E-cadherin protein expression was reduced in one HCC, while abnormalities in protein expression were absent in beta-catenin. Conclusion: Contrary to previous observations in HCC from other countries, neither E-cadherin nor beta-catenin appears to play a role in hepatocarcinogenesis in Australian and South African patients with HCC. (C) 2004 Blackwell Publishing Asia Pty Ltd.