979 resultados para Hertzian dipole
Resumo:
The magnet design, fabrication, and measurement of HIRFL-CSR (Heavy Ion Research Facility in Lanzhou Cooling Storage Ring) are presented. All magnets will be laminated And welded with an armor-coated surface between two big endplates made of sticking glue 0.5 mm-thick sheets. The dipole of CSRm was chosen an H type with an air circle on the pole to improve the field uniformity. The dipole of CSRe was chosen the C type with an air circle and two air slots on the pole to improve the field homogeneity. Its reproducibility of magnet to magnet was adjusted with inserting small laminating pieces before demountable pole ends to reach less than +/- 2 x 10(-4) at optimized field level. CSRm quadrupoles diameter is 170 mm and has two different lengths, and its endplates were made with punching pieces after coating with epoxy glue, there is chamfered directly on the pole ends to reduce 12th-order contribution of field and without the demountable pole ends. CSRe main quadrupoles diameter is 240 mm and has two different lengths, and its endplates were also made with punching pieces coated with epoxy glue, there is also chamfered directly on the pole ends to reduce 12th-order contribution of field like CSRm.
Resumo:
The CR superconducting magnet is a dipole of the FAIR project of GSI in Germany. The quench of the strand is simulated using FEM software ANSYS. From the simulation, the quench propagation can be visualized. Programming with APDL, the value of propagation velocity of normal zone is calculated. Also the voltage increasing over time of the strand is computed and pictured. Furthermore, the Minimum Propagation Zone (MPZ) is studied. At last, the relation between the current and the propagation velocity of normal zone, and the influence of initial temperature on quench propagation are studied.
Resumo:
Basic research related to heavy-ion cancer therapy has been done at the Institute of Modern Physics (IMP), Chinese Academy of Sciences since 1995. Now a plan of clinical trial with heavy ions has been launched at IMP. First, superficially placed tumor treatment with heavy ions is expected in the therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL), where carbon ion beams with energy up to 100 MeV/u can be supplied. The shallow-seated tumor therapy terminal at HIRFL is equipped with a passive beam delivery system including two orthogonal dipole magnets, which continuously scan pencil beams laterally and generate a broad and uniform irradiation field, a motor-driven energy degrader and a multi-leaf collimator. Two different types of range modulator, ripple filter and ridge filter with which Guassian-shaped physical dose and uniform biological effective dose Bragg peaks can be shaped for therapeutic ion beams respectively, have been designed and manufactured. Therefore, two-dimensional and three-dimensional conformal irradiations to tumors can be performed with the passive beam delivery system at the earlier therapy terminal. Both the conformal irradiation methods have been verified experimentally and carbon-ion conformal irradiations to patients with superficially placed tumors have been carried out at HIRFL since November 2006.
Resumo:
The passive beam delivery system in the superficially-placed tumor therapy terminal at Heavy Ion Researc h Facility in Lanzhou (HIRFL), which includes two orthogonal dipole magnets as scanning system, a motor-driven energy degrader as range-shifter, series of ridge filters as range modulator and a multileaf collimator, is introduced in detail. The capacities of its important components and the whole system have been verified experimentally. The tests of the ridge filter for extending Bragg peak and the range shifter for energy adjustment show both work well. To examine the passive beam delivery system, a beam shaping experiment were carried out, simulating a three-dimensional (3D) conformal irradiation to a tumor. The encouraging experimental result confirms that 3D layer-stacking conformal irradiation can be performed by means of the passive system. The validation of the beam delivery system establishes a substantial basis for upcoming clinical trial for superficially-placed tumors with heavy ions in the therapy terminal at HIRFL.
Resumo:
A new axial beam injection system is designed and being constructed at the HIRFL. It consists of 2 GLASSER lenses, 1 dipole, 5 quadrupoles and 3 solenoids. There are two beam line branches for 14.5GHz ECR ion source and 18.5GHz super conducting ECR ion source. Both transverse and longitudinal beam optics are improved in contrast with the old one. The layout, beam optics calculation results and further improved design are given.
Resumo:
Correlations between the behavior of the nuclear symmetry energy, the neutron skins, and the percentage of energy-weighted sum rule (EWSR) exhausted by the pygmy dipole resonance (PDR) in Ni-68 and Sn-132 are investigated by using different random phase approximation (RPA) models for the dipole response, based on a representative set of Skyrme effective forces plus meson-exchange effective Lagrangians. A comparison with the experimental data has allowed us to constrain the value of the derivative of the symmetry energy at saturation. The neutron skin radius is deduced under this constraint.
Resumo:
In terms of single-atom induced dipole moment by Lewenstein model, we present the macroscopic high-order harmonic generation from mixed He and Ne gases with different mixture ratios by solving three-dimensional Maxwell's equation of harmonic field. And then we show the validity of mixture formulation by Wagner et al. [Phys. Rev. A 76 (2007) 061403(R)] in macroscopic response level. Finally, using least squares fitting we retrieve the electron return time of short trajectory by formulation in Kanai et al. [Phys. Rev. Lett. 98 (2007) 153904] when the gas jet is put after the laser focus.
Resumo:
The fully consistent relativistic continuum random phase approximation (RCRPA) has been constructed in the momentum representation in the first part of this paper. In this part we describe the numerical details for solving the Bethe-Salpeter equation. The numerical results are checked by the inverse energy weighted sum rules in the isoscalar giant monopole resonance, which are obtained from the constraint relativistic mean field theory and also calculated with the integration of the RCRPA strengths. Good agreement between the misachieved. We study the effects of the self-consistency violation, particularly the currents and Coulomb interaction to various collective multipole excitations. Using the fully consistent RCRPA method, we investigate the properties of isoscalar and isovector collective multipole excitations for some stable and exotic from light to heavy nuclei. The properties of the resonances, such as the centroid energies and strength distributions are compared with the experimental data as well as with results calculated in other models.
Resumo:
The process of multielectron transfer from a Na-4 cluster induced by highly charged C6+, C4+, C2+ and C+ ions is studied using the method of time-dependent density functional theory within the local density approximation combined with the use of pseudopotential. The evolution of dipole moment changes and emitted electrons in Na-4 isobtained and the time-dependent probabilities with various charges are deduced. It is shown that the Na-4 cluster is strongly ionized by C6+ and that the number of emitted electrons per atom of Na-4 is larger than that of Na-2 under the same condition. One can find that the detailed information of the emitted electrons from Na-4 is different from the same from Na-2, which is possibly related to the difference in structure between the two clusters.
Resumo:
Some superconducting magnets research at IMP (Institute of Modern Physics, CAS, Lanzhou) will be described in this paper. Firstly, a superconducting electron cyclotron resonance ion source (SECRAL) was successfully built to produce intense beams of highly charged heavy ions for Heavy Ion Research Facility in Lanzhou (HIRFL). An innovation design of SECRAL is that the three axial solenoid coils are located inside of a sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. Some excellent results of ion beam intensity have been produced and SECRAL has been put into operation to provide highly charged ion beams for HIRFL since May 2007. Secondly, a super-ferric dipole prototype of FAIR Super-FRS is being built by FCG (FAIR China Group) in cooperation with GSI. Its superconducting coils and cryostat is made and tested in the Institute of Plasma Physics (IPP, Hefei), and it more 50 tons laminated yoke was made in IMP. This super-ferric dipole static magnetic field was measured in IMP, it reach to the design requirement, ramping field and other tests will be done in the future. Thirdly, a 3 T superconducting homogenous magnetic field solenoid with a 70 mm warm bore has been developed to calibrate Hall sensor, some testing results is reported. And a penning trap system called LPT (Lanzhou Penning Trap) is now being developed for precise mass measurements.
Resumo:
A dynamic measurement system was developed by the Institute of Modern Physics (IMP) for the dipole prototype of Rapid Cycle Synchrotron (RCS) of China Spallation Neutron Source (CSNS). The repetition frequency of RCS is 25 Hz. The probe is a moving arc searching-coil, and the data acquisition system is based on the dynamic analysis modular of National Instrument. To get the error of high order harmonics of the field at basic frequency, the hardware integrator is replaced by a high speed ADC with software filter and integrator. A series of harmonic coefficients of field are used to express the varieties of dynamic fields in space and time simultaneously. The measurement system has been tested in Institute of High Energy Physics (IHEP), and the property of the dipole prototype of RCS has been measured. Some measurement results and the repeatability of system are illustrated in this paper.
Resumo:
The FAIR China Group (FCG), consisting of the Institute of Modern Physics (IMP Lanzhou), the Institute of Plasma Physics (ASIPP, Hefei) and the Institute of Electric Engineering (IEE, Beijing) developed and manufactured in cooperation with GSI, Germany a prototype of a superferric dipole for the Super-Fragment-Separator of the FAIR-project [1]. The dipole magnets of the separator will have a deflection radius of 12.5 m, a field up to 1.6 T, a gap of at least 170 mm and an effective length of more than 2 meters to bend ion beams with a rigidity from 2 T . m up to 20 T . m. The magnets operate at DC mode. These requirements led to a superferric design with a yoke weight of more than 50 tons and a maximum stored energy of more than 400 kJ. The principles of yoke, coil and cryostat construction will be presented. We will also show first results of tests and measurements realized at ASIPP and at IMP.
Resumo:
利用能量为42MeV和45MeV的9Be束流轰击160Gd自支撑靶,通过160Gd(9Be,4n)165Er熔合蒸发反应研究了165Er核的高自旋态结构。基于实验测量结果,扩展了基于ν5/2−[523]和ν5/2+[642]准粒子组态的转动带,观测到了连接这两条具有不同宇称的转动带的强电偶极跃迁。利用跃迁分支比,提取了带间电偶极跃迁的约化跃迁概率,并讨论了强电偶极跃迁与八极关联之间的关系。提取了ν5/2−[523]和ν5/2+[642]转动带的顺排角动量和能级能量旋称劈裂值,并进行了简单讨论。
Resumo:
利用能量为42MeV和45MeV的9Be束流轰击160Gd自支撑靶,通过160Gd(9Be,4n)165Er熔合蒸发反应研究了165Er核的高自旋态结构。基于实验测量结果,扩展了基于ν5/2−[523]和ν5/2+[642]准粒子组态的转动带,观测到了连接这两条具有不同宇称的转动带的强电偶极跃迁。利用跃迁分支比,提取了带间电偶极跃迁的约化跃迁概率,并讨论了强电偶极跃迁与八极关联之间的关系。提取了ν5/2−[523]和ν5/2+[642]转动带的顺排角动量和能级能量旋称劈裂值,并进行了简单讨论。
Resumo:
本文从磁场测量的一般方法出发,简要介绍了磁场测量的基本理论和HIRFL-CSR(兰州重离子加速器冷却储存环)的二极铁积分测磁装置。测量装置主要包括探测线圈、积分器、步进电机驱动卡、步进电机、移动小车等。从HIRFL-CSR主环H型二极磁铁的设计要求出发, 根据积分测量的基本原理,着重介绍了CSR主环二极磁铁磁场分布测量、分散性测量、传递函数测量的方法、数据处理的方法和过程、及最后的测磁结果。为了提高测量结果的精度,使用了相对测量的方法,另外在分散性测量的论述中,用数学方法对相对测量进行了推导。在磁场分布性的测量中,根据测磁数据分析计算了磁场的高阶分量和二级铁的等效偏转角度随电流变化的结果。在测量分散性的过程中,对磁场垫补以达到CSR工程要求的方法和磁场特性了研究。在特殊磁铁的测量中,对调整线圈的磁场垫补的作用进行了测量。在CSRm二极铁的测量中,测磁的误差被给出, 且符合工程要求。