970 resultados para Herpes simplex virus
Resumo:
Ross River virus (RRV) disease is the most common and widespread mosquito-borne disease in Australia, resulting in considerable health and economic cost to communities. While naturally occurring non-tidal flood events may enhance mosquito abundance, little is known about the impact of such events on RRV transmission. This paper critically reviews the existing evidence for an association between naturally occurring non-tidal flood events and RRV transmission. A systematic literature search was conducted on RRV transmission related to flooding and inundation from rain and riverine overflow. Overall, the evidence to support a positive association between flooding and RRV outbreaks is largely circumstantial, with the literature mostly reporting only coincidental occurrence between the two. However, for the Murray River, river flow and height (surrogates of flooding) were positively and significantly associated with RRV transmission. The association between non-tidal flooding and RRV transmission has not been studied comprehensively. More frequent flood events arising from climate change may result in increased outbreaks of RRV disease. Understanding the link between flood events and RRV transmission is necessary if resources for mosquito spraying and public health warnings are to be utilized more effectively and efficiently.
Resumo:
Background Infection with human herpesvirus 8 (HHV-8) has been consistently linked to Kaposi's sarcoma, but its mode of transmission, association with other cancers, and interaction with the human immunodeficiency virus type 1 (HIV-1) are largely unknown. Methods Between January 1992 and December 1997, we interviewed 3591 black patients with cancer in Johannesburg and Soweto, South Africa. Blood was tested for antibodies against HIV-1 and HHV-8 in 3344 of the patients. Antibodies against HHV-8 were detected with an indirect immunofluorescence assay. The intensity of the fluorescent signal correlated well with the titers of antibodies (P<0.001). The relations among the presence of anti–HHV-8 antibodies, sociodemographic and behavioral factors, type of cancer, and the presence or absence of coexistent HIV-1 infection were examined with the use of unconditional logistic-regression models. Results Among the 3293 subjects with cancers other than Kaposi's sarcoma, the standardized seroprevalence of antibodies against HHV-8 was 32 percent, which did not differ significantly from the standardized seroprevalence among black blood donors. Among these 3293 patients, the prevalence of antibodies against HHV-8 increased with increasing age (P<0.001) and an increasing number of sexual partners (P=0.05) and decreased with increasing years of education (P=0.007); it was not strongly associated with HIV-1 infection. Anti–HHV-8 antibodies were more frequent among black than white blood donors (P<0.001). Among the 51 patients with Kaposi's sarcoma, the standardized seroprevalence of antibodies against HHV-8 was 83 percent, significantly higher than the prevalence among those without Kaposi's sarcoma (P<0.001). For 16 other specific types of cancer, including multiple myeloma (108 cases) and prostate cancer (202 cases), the variation in the standardized seroprevalence of antibodies against HHV-8 was not remarkable. At a given intensity of fluorescence of anti–HHV-8 antibodies, Kaposi's sarcoma was more frequent among HIV-1–positive patients than among those who were HIV-1–negative (P<0.001). Conclusions Among black patients with cancer in South Africa, the seroprevalence of anti–HHV-8 antibodies is high and is specifically associated with Kaposi's sarcoma, particularly at high titers.
Resumo:
Maize streak virus (MSV), which causes maize streak disease (MSD), is the major viral pathogenic constraint on maize production in Africa. Type member of the Mastrevirus genus in the family Geminiviridae, MSV has a 2.7 kb, single-stranded circular DNA genome encoding a coat protein, movement protein, and the two replication-associated proteins Rep and RepA. While we have previously developed MSV-resistant transgenic maize lines constitutively expressing ‘‘dominant negative mutant’’ versions of the MSV Rep, the only transgenes we could use were those that caused no developmental defects during the regeneration of plants in tissue culture. A better transgene expression system would be an inducible one, where resistance-conferring transgenes are expressed only in MSV-infected cells. However, most known inducible transgene expression systems are hampered by background or ‘‘leaky’’ expression in the absence of the inducer. Here we describe an adaptation of the recently developed INPACT system to express MSV-derived resistance genes in cell culture. Split gene cassette constructs (SGCs) were developed containing three different transgenes in combination with three different promoter sequences. In each SGC, the transgene was split such that it would be translatable only in the presence of an infecting MSV’s replication associated protein. We used a quantitative real-time PCR assay to show that one of these SGCs (pSPLITrepIII-Rb-Ubi) inducibly inhibits MSV replication as efficiently as does a constitutively expressed transgene that has previously proven effective in protecting transgenic maize from MSV. In addition, in our cell-culture based assay pSPLITrepIII-Rb-Ubi inhibited replication of diverse MSV strains, and even, albeit to a lesser extent, of a different mastrevirus species. The application of this new technology to MSV resistance in maize could allow a better, more acceptable product.
Resumo:
This article considers the race to sequence the Severe Acute Respiratory Syndrome virus ('the SARS virus') in light of the debate over patent law and access to essential medicines. Part II evaluates the claims of public research institutions in Canada, the United States, and Hong Kong, and commercial companies, to patent rights in respect of the SARS virus. It highlights the dilemma of ’defensive patenting' - the tension between securing private patent rights and facilitating public disclosure of information and research. Part III considers the race to patent the SARS virus in light of wider policy debates over gene patents. It examines the application of such patent criteria as novelty, inventive step, utility, and secret use. It contends that there is a need to reform the patent system to accommodate the global nature of scientific inquiry, the unique nature of genetics, and the pace of technological change. Part IV examines the role played by the World Trade Organization and the World Health Organization in dealing with patent law and access to essential medicines. The article contends that there is a need to ensure that the patent system is sufficiently flexible and adaptable to accommodate international research efforts on infectious diseases.
Resumo:
Ross River virus (RRV) is the predominant cause of epidemic polyarthritis in Australia, yet the antigenic determinants are not well defined. We aimed to characterize epitope(s) on RRV-E2 for a panel of monoclonal antibodies (MAbs) that recognize overlapping conformational epitopes on the E2 envelope protein of RRV and that neutralize virus infection of cells in vitro. Phage-displayed random peptide libraries were probed with the MAbs T1E7, NB3C4, and T10C9 using solution-phase and solid-phase biopanning methods. The peptides VSIFPPA and KTAISPT were selected 15 and 6 times, respectively, by all three of the MAbs using solution-phase biopanning. The peptide LRLPPAP was selected 8 times by NB3C4 using solid-phase biopanning; this peptide shares a trio of amino acids with the peptide VSIFPPA. Phage that expressed the peptides VSIFPPA and LRLPPAP were reactive with T1E7 and/or NB3C4, and phage that expressed the peptides VSIFPPA, LRLPPAP, and KTAISPT partially inhibited the reactivity of T1E7 with RRV. The selected peptides resemble regions of RRV-E2 adjacent to sites mutated in neutralization escape variants of RRV derived by culture in the presence of these MAbs (E2 210-219 and 238-245) and an additional region of E2 172-182. Together these sites represent a conformational epitope of E2 that is informative of cellular contact sites on RRV.
Resumo:
Serum and synovial antibody reactivities of caprine arthritis encephalitis virus (CAEV) infected goats were assessed by Western blotting against purified CAEV antigen and the greatest intensity of reactivity in the serum of arthritic goats was to the gp45 transmembrane protein (TM). The extracytoplasmic domain of the TM gene was cloned into a pGEX vector and expressed in Escherichia coil as a glutathione S transferase fusion protein (GST-TM). This clone was found to be 90.5 and 89.2% homologous to published sequences of CAEV TM gene. Serum of 16 goats naturally infected with CAEV were examined by Western blotting for reactivity to the fusion protein. Antibody reactivity to the GST-TM correlated with clinically detectable arthritis (R = 0.642, P ≤ 0.007). The hypothesis that the immune response to the envelope proteins of the CAEV contributes to the severity of arthritis in goats naturally infected with CAEV via epitope mimicry was tested. Antibodies from 5 CAEV infected goats were affinity purified against the GST-TM fusion protein and tested for cross-reactivity with a series of goat synovial extracts and proteogylcans. No serum antibody response or cross-reactivity of affinity purified antibodies could be detected. Peptides of the CAEV SU that were predicted to be linear epitopes and a similar heat shock protein 83 (HSP) peptide identified by database searching, were synthesized and tested for reactivity in CAEV goats using ELISA, in vitro lymphocyte proliferation and delayed type hypersensitivity (DTH) assays. Peripheral blood lymphocytes from 10 of 17 goats with long term natural CAEV infections proliferated in vitro in response to CAEV and in vivo 3 of 7 CAEV infected goats had a DTH reaction to CAEV antigen. However, none of the peptides elicited significant cell mediated immune responses from CAEV infected goats. No antibody reactivity to the SU peptides or HSP peptide was found. We observed that the antibody reactivity to the CAEV TM protein associated with severity of arthritis however epitope mimicry by the envelope proteins of CAEV is unlikely to be involved.
Resumo:
Epitope mimicry is the theory that an infectious agent such as a virus causes pathological effects via mimicry of host proteins and thus elicits a cross-reactive immune response to host tissues. Weise and Carnegie (1988) found a region of sequence similarity between the pol gene of the Maedi Visna virus (MVV), which induces demyelinating encephalitis in sheep, and myelin basic protein (MBP), which is known to induce experimental allergic encephalitis (EAE) in laboratory animals. In this study, cross-reactions between sera raised in sheep against synthetic peptides of MVV (TGKIPWILLPGR) and 21.5 kDa MBP (SGKVPWLKRPGR) were demonstrated using enzyme-linked immunosorbant assay (ELISA) and thin layer chromatography (TLC) immunoprobing. The antibody responses of MVV-infected sheep were investigated using ELISA against the peptides, and MBP protein, immunoprobing of the peptides on TPC plates and Western blotting against MBP. Slight significant reactions to the 21.5 kDa MBP peptide (P < 0.001) and to a lesser extent sheep MBP (P < 0.004) were detected in ELISA. The MBP peptide evoked stronger responses from more sera than the MVV peptide on immunoprobed TLC plates. On the Western blots, eight of the 23 sheep with Visna had serum reactivity to MBP. This slight reaction to MBP in MVV-infected sheep is of interest because of the immune responses to MBP evident in multiple sclerosis and EAE, but its relevance in Visna is limited since no correlation with disease severity was observed. The cell-mediated immune responses of MVV-infected sheep against similar peptides was assessed. The peptides did not stimulate proliferation of peripheral blood lymphocytes of MVV-infected sheep. Since the MVV peptide was not recognised by antibodies or T lymphocytes from MVV-infected and encephalic sheep, it was concluded that epitope mimicry of this 21.5 kDa MBP peptide by the similar MVV pol peptide was not contributing to the immunopathogenesis of Visna. The slight antibody response to MBP and the MBP peptide can be attributed to by-stander effects of the immunopathology of MVV-induced encephalitis.
Resumo:
Background In 2011, a variant of West Nile virus Kunjin strain (WNVKUN) caused an unprecedented epidemic of neurological disease in horses in southeast Australia, resulting in almost 1,000 cases and a 9% fatality rate. We investigated whether increased fitness of the virus in the primary vector, Culex annulirostris, and another potential vector, Culex australicus, contributed to the widespread nature of the outbreak. Methods Mosquitoes were exposed to infectious blood meals containing either the virus strain responsible for the outbreak, designated WNVKUN2011, or WNVKUN2009, a strain of low virulence that is typical of historical strains of this virus. WNVKUN infection in mosquito samples was detected using a fixed cell culture enzyme immunoassay and a WNVKUN- specific monoclonal antibody. Probit analysis was used to determine mosquito susceptibility to infection. Infection, dissemination and transmission rates for selected days post-exposure were compared using Fisher’s exact test. Virus titers in bodies and saliva expectorates were compared using t-tests. Results There were few significant differences between the two virus strains in the susceptibility of Cx. annulirostris to infection, the kinetics of virus replication and the ability of this mosquito species to transmit either strain. Both strains were transmitted by Cx. annulirostris for the first time on day 5 post-exposure. The highest transmission rates (proportion of mosquitoes with virus detected in saliva) observed were 68% for WNVKUN2011 on day 12 and 72% for WNVKUN2009 on day 14. On days 12 and 14 post-exposure, significantly more WNVKUN2011 than WNVKUN2009 was expectorated by infected mosquitoes. Infection, dissemination and transmission rates of the two strains were not significantly different in Culex australicus. However, transmission rates and the amount of virus expectorated were significantly lower in Cx. australicus than Cx. annulirostris. Conclusions The higher amount of WNVKUN2011 expectorated by infected mosquitoes may be an indication that this virus strain is transmitted more efficiently by Cx. annulirostris compared to other WNVKUN strains. Combined with other factors, such as a convergence of abundant mosquito and wading bird populations, and mammalian and avian feeding behaviour by Cx. annulirostris, this may have contributed to the scale of the 2011 equine epidemic.
Resumo:
Several late gene expression factors (Lefs) have been implicated in fostering high levels of transcription from the very late gene promoters of polyhedrin and p10 from baculoviruses. We cloned and characterized from Bombyx mori nuclear polyhedrosis virus a late gene expression factor (Bmlef2) that encodes a 209-amino-acid protein harboring a Cys-rich C-terminal domain. The temporal transcription profiles of lef2 revealed a 1.2-kb transcript in both delayed early and late periods after virus infection. Transcription start site mapping identified the presence of an aphidicolin-sensitive late transcript arising from a TAAG motif located at -352 nucleotides and an aphidicolin-insensitive early transcript originating from a TTGT motif located 35 nucleotides downstream to a TATA box at -312 nucleotides, with respect to the +1 ATG of lef2. BmLef2 trans-activated very late gene expression from both polyhedrin and p10 promoters in transient expression assays. Internal deletion of the Cys-rich domain from the C-terminal region abolished the transcriptional activation. Inactivation of Lef2 synthesis by antisense lef2 transcripts drastically reduced the very late gene transcription but showed little effect on the expression from immediate early promoter. Decrease in viral DNA synthesis and a reduction in virus titer were observed only when antisense lef2 was expressed under the immediate early (ie-1) promoter. Furthermore, the antisense experiments suggested that lef2 plays a direct role in very late gene transcription.
Resumo:
The hemagglutinin (H) protein of Rinderpest virus expressed by a recombinant buculovirus used as a vaccine produced high titres of neutralizing antibody to Rinderpest virus in the vaccinated cattle, comparable to the levels produced by live attenuated vaccine. The immunized cattle were protected against a vaccine-virus challenge, as demonstrated by the failure of development of antibodies to N protein of the vaccine virus. The lack of replication of vaccine virus in the immunized cattle indicated that they are capable of showing a protective response if challenged with a virulent virus.
Resumo:
Haemagglutinin (HA) and fusion (F) proteins of peste-des-petits-ruminants virus (PPRV) and rinderpest virus (RPV) were purified by immunoaffinity chromatography. The purified proteins were characterized by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE). Rabbit hyperimmune sera were raised against the purified HA and F proteins and assayed by enzyme-linked immunosorbent assay (ELISA), haemagglutination-inhibition (HAI) and virus neutralization (VN) tests. The immunized animals were challenged with a virulent lapinized (rabbit-adapted) strain of RPV: Both HA and F proteins of PPRV protected rabbits against a lethal challenge with lapinized RPV. As expected, RPV HA and F proteins also conferred a similar protection against the homologous challenge. The postchallenge antibody responses were of a true anamnestic type.
Resumo:
Japanese encephalitis virus (JEV) envelope (E) protein has been shown to play a critical role in attachment to cells. However, the receptor interacting with envelope protein has not been conclusively identified. Using mouse neuroblastoma (Neuro2a) cells and purified JEV-E protein in `Virus Overlay Protein Binding Assay' followed by MALDI-TOF analysis, we identified `heat shock protein 70' (Hsp70) as a possible receptor for JEV. Indirect immunofluorescence and flow-cytometry analysis demonstrated localization of Hsp70 on Neuro2a cell surface. Co-immunoprecipitation followed by Western blot analysis reconfirmed the interaction between Hsp70 and JEV-E protein. Further, anti-Hsp70 polyclonal-antibodies were able to block JEV entry into Neuro2a cells. Additionally, using the bioinformatic tool - FTDOCK, clocking between the proteins was performed. Amongst six interacting structural poses studied one pose involving RGD motif on JEV-E and leucine(539) on Hsp70 displayed stable interaction. These observations indicate that Hsp70 serves as putative receptor for JEV in Neuro2A cells.
Resumo:
The cupric and ferric complexes of isonicotinic acid hydrazide (INH) inhibit the DNA synthesis catalysed by avian myeloblastosis virus (AMV) reverse transcriptase. The inhibition was to the extent of 95% by 50 μM of cupric-INH complex and 55% by 100 μM of ferric-INH complex. These complexes have been found to bind preferentially to the enzyme than to the template-primer. Kinetic analysis showed that the cupric-INH complex is a non-competitive inhibitor with respect to dTTP. The time course of inhibition has revealed that the complexes are inhibitory even after the initiation of polynucleotide synthesis. In vivo toxicity studies in 1-day-old chicks have shown that the complexes are not toxic up to a concentration of 500 μg per chick. Infection of the 1-day-old chicks with AMV pretreated with 150 μg of either of the complexes prevented symptoms of leukemia due to virus inactivation.