967 resultados para Health Sciences, Pharmacology|Biology, Animal Physiology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion channels play a crucial role in the functioning of different systems of the body because of their ability to bridge the cell membrane and allow ions to pass in and out of the cell. Ionotropic glutamate receptors are one class of these important proteins and have been shown to be critical in propagating synaptic transmission in the central nervous system and in other diverse functions throughout the body. Because of their wide-ranging effects, this family of receptors is an important target for structure-function investigations to understand their mechanism of action. ^ α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are one subtype of glutamate receptors and have been shown to be the primary receptors involved in rapid excitatory signaling in the central nervous system. Agonist binding to the extracellular ligand binding domain of these receptors causes various conformational changes that culminate in formation of the ion channel. Previous structural investigations have provided important information about their mechanism of action, including uncovering a relationship between the degree of cleft closure in the binding domain and activation of the receptor. However, what question remains unanswered is how specific interactions between the agonist and the protein interplay with cleft closure to mediate receptor activation. ^ To investigate this question, I applied a multiscale approach to investigate the effects of agonist binding on various levels. Vibrational spectroscopy was utilized to investigate molecular-level interactions in the binding pocket, and fluorescence resonance energy transfer (FRET) was employed to measure cleft closure in the isolated ligand binding domain. The results of these studies in the isolated binding domain were then correlated to activation of the full receptor. These investigations showed a relationship between the strength of the interaction at the α-amine group of the agonist and extent of receptor activation, where a stronger interaction correlated to a larger activation, which was upheld even when the extent of cleft closure did not correlate to activation. These results show that this interaction at the α-amine group is critical in mediating the allosteric mechanism of activation and provide a bit more insight into how agonist binding is coupled to channel gating in AMPA receptors. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GS-9219 is a cell-permeable double-prodrug of the acyclic nucleotide analogue 9-(2-phosphonylmethoxyethyl)guanine (PMEG). The conversion of GS-9219 to its active metabolite, PMEG diphosphate (PMEGpp), involves several intracellular enzymatic reactions which reduces the concentration of nephrotoxic PMEG in plasma. PMEGpp competes with the natural substrate, dGTP, for incorporation by DNA polymerases. The lack of a 3'-hydroxyl moiety makes PMEGpp a de facto DNA chain-terminator. The incorporation of PMEGpp into DNA during DNA replication causes DNA chain-termination and stalled replication forks. Thus, the primary mechanism of action of GS-9219 in replicating cells is via DNA synthesis inhibition. GS-9219 has substantial antiproliferative activity against activated lymphocytes and tumor cell lines of hematological malignancies. Tumor cell proliferation was significantly reduced as measured by PET/CT scans in dogs with advanced-stage, spontaneously occurring non-Hodgkin's lymphoma (NHL).^ The hypothesis of this dissertation is that the incorporation of PMEGpp into DNA during repair re-synthesis would result in the inhibition of DNA repair and accumulation of DNA damage in chronic lymphocytic leukemia (CLL) cells and activate signaling pathways to cell death.^ To test this hypothesis, CLL cells were treated with DNA-damaging agents to stimulate nucleotide excision repair (NER) pathways, enabling the incorporation of PMEGpp into DNA. When NER was activated by UV, PMEGpp was incorporated into DNA in CLL cells. Following PMEGpp incorporation, DNA repair was inhibited and led to the accumulation of DNA strand breaks. The combination of GS-9219 and DNA-damaging agents resulted in more cell death than the sum of the single agents alone. The presence of DNA strand breaks activated the phosphatidylinositol 3-kinase-like protein kinase (PIKK) family members ataxia-telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK). The activated ATM initiated signaling to the downstream target, p53, which was subsequently phosphorylated and accumulated to exert its apoptotic functions. P53-targeted pro-apoptotic genes, Puma and Bax, were upregulated and activated when DNA repair was inhibited, likely contributing to cell death. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hypothesis tested was that rapid rejection of Trichinella spiralis infective larvae from immunized rats following a challenge infection is associated with a local anaphylactic reaction, and this response should be reflected in altered small intestinal motility. The objective was to determine if altered gut smooth muscle function accompanies worm rejection based on the assumption that anaphylaxis in vivo could be detected by changes in intestinal smooth muscle contractile activity (ie. an equivalent of the Schultz-Dale reaction or in vitro anaphylaxis). The aims were to (1) characterize motility changes by monitoring intestinal myoelectric activity in conscious rats during the enteric phase of T. spiralis infection in immunized hosts, (2) detect the onset and magnitude of myoelectric changes caused by challenge infection in immunized rats, (3) determine the parasite stimulus causing changes, and (4) determine the specificity of host response to stimulation. Electrical slow wave frequency, spiking activity, normal interdigestive migrating myoelectric complexes and abnormal migrating action potential complexes were measured. Changes in myoelectric parameters induced by larvae inoculated into the duodenum of immune hosts differed from those associated with primary infection with respect to time of onset, magnitude and duration. Myoelectric changes elicited by live larvae could not be reproduced by inoculation of hosts with dead larvae, larval excretory-secretory products, or by challenge with a heterologous parasite, Eimeria nieschulzi. These results indicate that (1) local anaphylaxis is a component of the initial response to T. spiralis in immune hosts, since the rapid onset of altered smooth muscle function parallels in time the expression of rapid rejection of infective larvae, and (2) an active mucosal penetration attempt by the worm is necessary to elicit this host response. These findings provide evidence that worm rejection is a consequence of, or sequel to, an immediate hypersensitivity reaction elicited when parasites attempt to invade the gut mucosa of immunized hosts. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to evaluate factors regulating substrate metabolism in vivo positron emitting radionuclides were used for the assessment of skeletal muscle blood flow and glucose utilization. The potassium analog, Rb-82 was used to measure skeletal muscle blood flow and the glucose analog, 18-F-2-deoxy-2-fluoro-D-glucose (FDG) was used to examine the kinetics of skeletal muscle transport and phosphorylation.^ New Zealand white rabbits' blood flow ranged from 1.0-70 ml/min/100g with the lowest flows occurring under baseline conditions and the highest flows were measured immediately after exercise. Elevated plasma glucose had no effect on increasing blood flow, whereas high physiologic to pharmacologic levels of insulin doubled flow as measured by the radiolabeled microspheres, but a proportionate increase was not detected by Rb-82. The data suggest that skeletal muscle blood flow can be measured using the positron emitting K+ analog Rb-82 under low flow and high flow conditions but not when insulin levels in the plasma are elevated. This may be due to the fact that insulin induces an increase in the Na+/K+-ATPase activity of the cell indirectly through a direct increase in the Na+/H+pump activity. This suggests that the increased cation pump activity counteracts the normal decrease in extraction seen at higher flows resulting in an underestimation of flow as measured by rubidium-82.^ Glucose uptake as measured by FDG employed a three compartment mathematical model describing the rates of transport, countertransport and phosphorylation of hexose. The absolute values for the metabolic rate of FDG were found to be an order of magnitude higher than those reported by other investigators. Changes noted in the rate constant for transport (k1) were found to disagree with the a priori information on the effects of insulin on skeletal muscle hexose transport. Glucose metabolism was however, found to increase above control levels with administration of insulin and electrical stimulation. The data indicate that valid measurements of skeletal muscle glucose transport and phosphorylation using the positron emitting glucose analog FDG requires further model application and biochemical validation. (Abstract shortened with permission of author.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considerable evidence suggests that central cholinergic neurons participate in either acquisition, storage or retrieval of information. Experiments were designed to evaluate information processing in mice following either reversible or irreversible impairment in central cholinergic activity. The cholinergic receptor antagonists, atropine and methylatropine were used to reversibly inhibit cholinergic transmission. Irreversible impairment in central cholinergic function was achieved by central administration of the cholinergic-specific neurotoxins, N-ethyl-choline aziridinium (ECA) and N-ethyl-acetylcholine aziridinium (EACA).^ ECA and EACA appear to act by irreversible inhibition of high affinity choline uptake (proposed rate-limiting step in acetylcholine synthesis). Intraventricular administration of ECA or EACA produced persistent reduction in hippocampal choline acetyltransferase activity. Other neuronal systems and brain regions showed no evidence of toxicity.^ Mice treated with either ECA or EACA showed behavioral deficits associated with cholinergic dysfunction. Passive avoidance behavior was significantly impaired by cholinotoxin treatment. Radial arm maze performance was also significantly impaired in cholinotoxin-treated animals. Deficits in radial arm maze performance were transient, however, such that rapid and apparent complete behavioral recovery was seen during retention testing. The centrally active cholinergic receptor antagonist atropine also caused significant impairment in radial arm maze behavior, while equivalent doses of methylatropine were without effect.^ The relative effects of cholinotoxin and receptor antagonist treatment on short-term (working) memory and long-term (reference) memory in radial arm maze behavior were examined. Maze rotation studies indicated that there were at least two different response strategies which could result in accurate maze performance. One strategy involved the use of response algorithms and was considered to be a function of reference memory. Another strategy appeared to be primarily dependent on spatial working memory. However, all behavioral paradigms with multiple trails have reference memory requirements (i.e. information useful over all trials). Performance was similarly affected following either cholinotoxin or anticholinergic treatment, regardless of the response strategy utilized. In addition, rates of behavioral recovery following cholinotoxin treatment were similar between response groups. It was concluded that both cholinotoxin and anticholinergic treatment primarily resulted in impaired reference memory processes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asbestos and silica are important industrial hazards. Exposure to these dusts can result in pulmonary fibrosis and, in the case of asbestos, cancer. Although the hazards of asbestos and silica exposure have long been known, the pathogenesis of dust-related disease is not well understood. Both silica and asbestos are thought to alter the function of the alveolar macrophage, but the nature of the biochemical alteration is unknown. Therefore, this study examined the effect of asbestos and silica on the activation pathway of the guinea pig alveolar macrophage. Activation of macrophages by physiological agents results in stimulation of phospholipase C causing phosphatidyl inositol turnover and intracellular calcium mobilization. Phosphatidyl inositol turnover produces diacylglycerol which activates protein kinase C causing superoxide anion production.^ Chrysotile stimulated alveolar macrophages to produce superoxide anion. This stimulation proceeded via phospholipase C, since chrysotile stimulated phosphatidyl inositol turnover and intracellular calcium mobilization. The possible involvement of a coupling protein was evaluated by pretreating cells with pertussis toxin. Pertussis toxin pretreatment partially inhibited chrysotile stimulation, suggesting that chrysotile activates a coupling protein in an non-classical manner. Potential binding sites for chrysotile stimulation were examined using a series of nine lectins. Chrysotile-stimulated superoxide anion production was blocked by pretreatment with lectins which bound to N-acetylglucosamine, but not by lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine polymer, chitin, inhibited chrysotile-stimulated superoxide anion production, suggesting that chrysotile stimulated superoxide anion production by binding to N-acetylglucosamine residues.^ On the other hand, silica did not stimulate superoxide anion production. The effect of silica on agonist stimulation of this pathway was examined using two stimulants of superoxide anion production, N-formyl-nle-leu-phe (FNLP, which stimulates through phospholipase C) and phorbol-12,13-dibutyrate (which directly activates protein kinase C). Sublethal doses of silica inhibited FNLP-stimulated superoxide anion production, but did not affect phorbol-12,13-dibutyrate-stimulated superoxide anion production, suggesting that the site of inhibition precedes protein kinase C. This inhibition was not due to cell membrane damage, since cell permeability to calcium-45 and rubidium-86 was not increased. It is concluded that chrysotile binds to N-acetylglucosamine residues on macrophage surface glycoproteins to stimulate the physiological pathway resulting in superoxide anion production. In contrast, silica does not stimulate superoxide anion production, but it did inhibit FNLP-stimulated superoxide anion production. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation was designed as a hospital-based, historical cohort study. The objective of the study was to determine the association between premature rupture of the membranes (PROM) and its duration on neonatal sepsis, infection, and mortality. Neonates born alive with gestational ages between 25 and 35 weeks from singleton pregnancies complicated by PROM were selected. Each of the 507 neonates was matched on gestational age, gender, ethnicity, and month of birth with a neonate without the complication of PROM.^ Data were abstracted from deliveries between January 1979 and December 1985 describing the mother's demographics, labor and delivery treatments and complications, the neonate's demographics, infection status, and medical care. The matched pairs analysis reveals a significant increase in risk of neonatal sepsis (RR = 3.5) and neonatal infection (RR = 2.4) among preterm births complicated by PROM, with a PROM exposure contributing an excess 4 to 5 cases of sepsis per 100 infants (RD = 0.04 for infection and RD = 0.05 for sepsis). Generally PROM remains an important risk factor for sepsis and infection when controlling for various other characteristics, and the risk difference remains constant.^ PROM was not significantly associated with neonatal mortality (RR = 1.02). There is an increase in risk difference for mortality associated with PROM among septic and infected infants, but it is not significant.^ A clear increase in risk of sepsis and infection from PROM occurs when durations of PROM are long (more than 48 hours), e.g., for sepsis the RR is 2.42 for short durations and RR is 6.0 for long durations. No such risk with long duration appears for neonatal mortality.^ This study indicates the importance of close observation of neonates with PROM for sepsis and infection so treatment can be initiated early. However, prematurity is the major risk for sepsis and the practice of early delivery to avoid prolonged durations of PROM does not alter the magnitude of risk. The greatest protection against these infection complications was provided when the neonate weighed over 1500 grams or had more than 33 weeks gestation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the administration-time-dependent effects of a stimulant (Dexedrine 5-mg), a sleep-inducer (Halcion 0.25-mg) and placebo (control) on human performance. The investigation was conducted on 12 diurnally active (0700-2300) male adults (23-38 yrs) using a double-blind, randomized sixway-crossover three-treatment, two-timepoint (0830 vs 2030) design. Performance tests were conducted hourly during sleepless 13-hour studies using a computer generated, controlled and scored multi-task cognitive performance assessment battery (PAB) developed at the Walter Reed Army Institute of Research. Specific tests were Simple and Choice Reaction Time, Serial Addition/Subtraction, Spatial Orientation, Logical Reasoning, Time Estimation, Response Timing and the Stanford Sleepiness Scale. The major index of performance was "Throughput", a combined measure of speed and accuracy.^ For the Placebo condition, Single and Group Cosinor Analysis documented circadian rhythms in cognitive performance for the majority of tests, both for individuals and for the group. Performance was best around 1830-2030 and most variable around 0530-0700 when sleepiness was greatest (0300).^ Morning Dexedrine dosing marginally enhanced performance an average of 3% with reference to the corresponding in time control level. Dexedrine AM also increased alertness by 10% over the AM control. Dexedrine PM failed to improve performance with reference to the corresponding PM control baseline. With regard to AM and PM Dexedrine administrations, AM performance was 6% better with subjects 25% more alert.^ Morning Halcion administration caused a 7% performance decrement and 16% increase in sleepiness and a 13% decrement and 10% increase in sleepiness when administered in the evening compared to corresponding in time control data. Performance was 9% worse and sleepiness 24% greater after evening versus morning Halcion administration.^ These results suggest that for evening Halcion dosing, the overnight sleep deprivation occurring in coincidence with the nadir in performance due to circadian rhythmicity together with the CNS depressant effects combine to produce performance degradation. For Dexedrine, morning administration resulted in only marginal performance enhancement; Dexedrine in the evening was less effective, suggesting the 5-mg dose level may be too low to counteract the partial sleep deprivation and nocturnal nadir in performance. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study has evaluated the utility of measuring effects of low level occupational exposure of nursing personnel to antineoplastic agents. The effect measured in this study is chromosomal damage in peripheral lymphocytes (chromosomal breakage and micronuclei frequency).^ Using nursing personnel in three exposure classifications (low, moderate and high) and breast cancer patients before and after treatment with antineoplastic agents, a weak but statistically significant association was found between exposure and chromosomal damage. Of special interest was the finding that consistent glove usage was negatively associated with increased chromosomal damage.^ The study also demonstrated a statistically significant association between the two measures of chromosomal damage: chromosomal breakage and micronuclei frequency. This suggests that the micronucleus method is a useful test for studying cytogenetic effects in lymphocytes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrazine $\rm (N\sb2H\sb4),$ an important liquid propellant and derivative chemical for pharmaceuticals and pesticides, produces coma and convulsions sometimes resulting in death. Hyperammonia was found in rabbits exposed to 18 mg/Kg of hydrazine. Results of Part One of this study of rabbits emphasize the importance of acute ammonia toxicity during the first three hours following exposure to hydrazine. At no time during this post exposure period did a significant reduction of hydrazine to ammonia occur. Therefore, the elevated blood ammonia was apparently secondary to the effects of hydrazine on metabolic pathways. Further, the results support the theory of competitive inhibition of ammonia by hydrazine and emphasize the need to monitor plasma ammonia following toxic exposure to hydrazine.^ In Part Two, urea, ammonia, CO$\sb2,$ pH, glucose, sodium, potassium, chloride and creatinine were measured for up to 4 hours following injection of 18 mg/Kg of hydrazine in each of two groups of five rabbits. One group received normal saline and the other group received 5% dextrose and water/normal saline. Hyperammonemia, minimal metabolic acidosis and hyperglycemia without increased urea were found in the rabbits receiving normal saline intravenous infusion and hydrazine injection. Hence, hypoglycemia does not appear to play a role in the development of hyperammonemia. A significant difference in the elevated ammonia levels between the two groups receiving dextrose and water/normal saline and normal saline at 1 hour occurred. There was no significant difference in the elevated ammonia levels seen between the two groups receiving dextrose and water/normal saline and normal saline at 2.5 and 4 hours. Thus at 1 hour the group receiving dextrose was able to utilize excess glucose to detoxify ammonia, while at 2.5 and 4 hours there was no significant difference in the two groups' ability to detoxify ammonia.^ Findings support the theory that hydrazine inhibits the formation of urea resulting in hyperammonemia. Results suggest that hydrazine at 18 mg/Kg, a known hypoglycemic agent, causes serious hyperammonemia without increasing urea production during hyperglycemia. These experiments support a unified theory for the toxic mechanism of action of hydrazine, i.e., the intermediary metabolic effects of hydrazine are brought about by the formation of hydrazones which encumber ATP synthesis and vitamin B$\sb6$ enzymatic reactions. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urines from patients administered mutagenic antineoplastic drugs were significantly mutagenic in the Ames assay, and hence may pose a genotoxic hazard to hospital personnel or family members caring for the patient. The urines were tested for mutagenicity in several different strains of Salmonella typhimurium that were uvr positive or negative (TA98, TA100, TA102, UTH8413, UTH8414). The urines were fractionated by high pressure liquid chromatography (HPLC) and the fractions assayed for mutagenicity in the strains in which the whole urine was mutagenic. Only fractions of urines containing the parent compound (cisplatin, doxorubicin, or mitomycin) were mutagenic; no other fraction showed significant mutagenicity. However, urine containing cyclophosphamide had two fractions that were mutagenic. One fraction, the fraction containing cyclophosphamide, required metabolic activation for mutagenicity. The other fraction did not require activation for mutagenicity.^ The chemical and mutagenic stability of these urines at room temperature was assayed over a 14 day period. The parent compound degraded within the first seven days, but the urines remained mutagenic. Cis-platinum was chemically stable in the urine; however, the urine decreased in mutagenicity. The decrease was probably the result of stable ligands binding to the platinum.^ Inactivation methods were developed to reduce the genotoxic hazard. Urine containing cisplatin was inactivated by complexing the cisplatin with diethyldithiocarbamate (DDTC). Oxidation with NaOCl of urines containing mitomycin and doxorubicin (sodium thiosulfate must be added to the doxorubicin urine) results in mutagenic inactivation. Inactivation of urine containing cyclophosphamide requires oxidation with alkaline potassium permaganate and trapping of active degradation products with sodium thiosulfate. Urines containing these drugs can be inactivated, but not always by the same method that inactivates the drug alone in solution. Therefore, in the future development of inactivation methods, both chemical and mutagenic assays are necessary to determine effectiveness. Methods of inactivation of mutagenic excreta developed in this study are both effective and practical. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benzene was studied in its target organ of effect, the bone marrow, with the micronucleus test and metaphase chromosomal analysis. Groups of 5 or 10, male and female CD-1 mice were treated with one or two p.o. or i.p. doses of benzene (440 mg/kg) or toluene (430, 860 or 1720 mg/kg) or both, and sacrificed 30 or 54h after the first dose. Benzene-treated animals were pretreated with phenobarbital (PB), 3-methylcholanthrene (3MC), (beta)-naphthoflavone ((beta)NF), SKF-525A, or Aroclor 1254. Toluene showed no clastogenic activity and reduced the clastogenic effect of co-administered benzene. None of the pretreatments protected against benzene clastogenicity. 3MC and (beta)NF greatly promoted benzene myeloclastogenicity. Dose response curves for benzene myeloclastogenicity were much steeper with 3MC induction than without. Micronuclei (MN) were 4-6 times higher by p.o. than i.p. benzene administration. This was not due to bacterial flora since no difference was found between germ-free and conventional males gavaged with benzene. A sensitive high-pressure liquid chromatographic method was developed and used to explore the relation between metabolic profiles of benzene in urine and MN after various pretreatments. Phenol (PH), trans-trans-muconic acid (MA) and hydroquinone (HQ) in the 48h male mouse urine accounted, respectively, for 12.8-22.8, 1.8-4.7 and 1.5-3.7% of the single oral dose of benzene (880, 440 and 220 mg/kg). Catechol (CT) was seen in trace amounts. MA was identified by ultraviolet and infrared spectroscopy and elemental analysis. Urinary metabolites--especially MA, HQ, and phenol glucuronide--correlated well with MN and were dependent on both the dose and the metabolism of benzene. Benzene metabolism was most inducible by cytochrome P-448 enzyme inducers, by p.o. > i.p., in males > females, and inhibited by toluene. Ph, CT or HQ administered p.o., 250, 150 and 250 mg/kg, respectively, or at 150 mg/kg x 2 after 3MC pretreatment, failed to reproduce the potent myeloclastogenicity of benzene. In fact, only HQ was mildly clastogenic. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pregnant Sprague-Dawley rats were gavaged with vehicle (olive oil) or 37.5, 75, 150 or 300 mg/kg of (DELTA)('9)-Tetrahydrocannabinol (THC) on days 18 or 19 of gestation. Male offspring as well as a group of hypophysectomized rats (positive control) were sacrificed at 35 days of age, while females and hypophysectomized control were sacrificed at 36 days of age. The sex-differences in ethylmorphine-N-demethylase and aniline hydroxylase liver activities were evaluated.^ Ethylmorphine-N-demethylase activity showed a significant difference between males and females from control and 37.5, 75 and 150 mg/kg THC dosed groups. Female offspring exposed prenatally to 300 mg/kg THC had a significant increase (p < .01) in N-demethylation activity, while their male counterparts had similar enzyme activity to those found in the male groups from control and 37.5 to 150 mg/kg THC dosed. Moreover, the percent increase in the 300 mg/kg THC dosed females was similar to that detected in the hypophysectomized female rats (positive control). As expected no sex difference in aniline hydroxylase activity was detected in control as well as exposed groups, including the 300 mg/kg THC dosed group.^ It is concluded that (DELTA)('9)-Tetrahydrocannabinol administered once by gavage in days 18 or 19 of gestation alters the liver Mixed Function Oxidase (MFO) sexual dimorphism imprinting process of the rat. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of time (i.e., biologic time structure) of drug administration on the bioavailability of theophylline was investigated in man after both a single dosage as well as after repeated, or chronic, drug administrations. Preliminary laboratory investigations on Balb-C mice showed the toxic