823 resultados para HYDROGEN STORAGE
Resumo:
The counteranion exchange of quaternary 1,2,3-triazolium salts was examined using a simple method that permitted halide ions to be swap for a variety of anions using an anion exchange resin (A¯ form). The method was applied to 1,2,3-triazolium-based ionic liquids and the iodideto- anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Additionally, an anion exchange resin (N3¯ form) was used to obtain the benzyl azide from benzyl halide under mild reaction. Likewise, following a similar protocol, bis(azidomethyl)arenes were also synthesized in excellent yields. The results of a proton NMR spectroscopic study of simple azolium-based ion pairs are discussed, with attention focused on the significance of the charged-assisted (CH)+···anion hydrogen bonds of simple azolium systems such as 1-butyl-3-methylimidazolium and 1-benzyl-3-methyl-1,2,3-triazolium salts.
Resumo:
The effect of pork fat reduction (from 44% to 20% final fat content) and its partial substitution by sunflower oil (3% addition) on the physicochemical, instrumental and sensory properties throughout storage time of small caliber non-acid fermented sausages (fuet type) with reduced sodium content (with partial substitution of NaCl by KCl and K-lactate) and without direct addition of nitrate and nitrite (natural nitrate source used instead), was studied. Results showed that sausages with reduced fat (10% initial fat content) and with acceptable sensory characteristics can be obtained by adding to the shoulder lean (8% fat content) during the grinding, either 3.3% backfat (3% fat content) or 3% sunflower oil, both previously finely comminuted with lean. Furthermore, sunflower oil showed to be suitable for partial pork backfat substitution in very lean fermented sausages, conferring desirable sensory properties similar to those of sausages with standard fat content. The sensory quality of the sausages was maintained after three-month cold storage in modified atmosphere.
Resumo:
The process of hydrogen desorption from amorphous silicon (ɑ-Si) nanoparticles grown by plasmaenhanced chemical vapor deposition (PECVD) has been analyzed by differential scanning calorimetry (DSC), mass spectrometry, and infrared spectroscopy, with the aim of quantifying the energy exchanged. Two exothermic peaks centered at 330 and 410 °C have been detected with energies per H atom of about 50 meV. This value has been compared with the results of theoretical calculations and is found to agree with the dissociation energy of Si-H groups of about 3.25 eV per H atom, provided that the formation energy per dangling bond in ɑ-Si is about 1.15 eV. It is shown that this result is valid for ɑ-Si:H films, too
Resumo:
Synthetic antioxidants are an alternative to prevent or retard the degradation of biofuels made from vegetable oils. In this study, it was evaluated the oxidative stability of B100 soybean oil biodiesel, in the presence of tercbutylhydroquinone (TBHQ). The results showed that the induction period, that precedes the seeding process, was delayed in the presence of the antioxidant. Moreover, the obtained results suggest that the B100 biodiesel containing TBHQ can present a storage time at 25 ºC, three times longer than the estimated time for the pure B100.
Resumo:
This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H2O2, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy.
Resumo:
Hydrogen peroxide has been used for decades in developed countries as an oxidizing agent in the treatment of water, domestic sewage and industrial effluents. This study evaluated the influence of the concentration of H2O2 and pH on the inactivation of Escherichia coli cells and the disinfection of sewage treated. The results showed that the inactivation rate increased with pH and H2O2. The presence of other contaminants dissolved in the effluent is probably the cause of these differences, because E. coli inactivation in synthetic wastewater was found to be much faster than in the real treated domestic sewage.
Resumo:
The partial oxidation of ethanol on γ-Al2O3, CeO2, ZrO2 and Ce xZr1-xO2 supported rhodium catalysts was investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The catalysts were characterized by temperature-programmed reduction (TPR) and cyclohexane dehydrogenation. DRIFTS studies on the partial oxidation of ethanol showed that ethanol is adsorbed dissociatively, through O-H bond breaking, with the formation of ethoxy species, followed by successive dehydrogenation to acetaldehyde and acetyl species. Further oxidation to acetate and carbonate species lead to the formation of CO, CH4 and H2 by decomposition. The presence of CeO2 in the catalysts favored the oxidation steps due to its oxygen storage capacity.
Resumo:
Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article, the electrochemical fundamentals of alkaline water electrolysis are explained and the main process constraints (e.g., electrical, reaction, and transport) are analyzed. The historical background of water electrolysis is described, different technologies are compared, and main research needs for the development of water electrolysis technologies are discussed.
Resumo:
A complex cation, diNOsarcobalt(III), [Co(diNOsar)]3+, (diNOsar = 1,8-dinitro-3,6,10,13,16,19-hexaazabicyclo-[6.6.6]eicosane), was synthesized and immobilized in the cavities of a Y zeolite by the reaction of precursor species in the pores of the zeolite. The encapsulated material was compared to the compound diNOsarcobalt(III) chloride, [Co(diNOsar)]Cl3. Both diNOsarcobalt(III) chloride and the zeolite-encapsulated complex, [Co(diNOsar)]3+/zeolite, were obtained in high yield and characterized by ultraviolet-visible and infrared spectroscopy. X-ray diffraction demonstrated the incorporation of the complex cation into the pores of the zeolite. The catalytic production of hydrogen peroxide from oxygenated water confirmed the successful synthesis of the complex diNOsarcobalt(III) immobilized in the zeolite.
Resumo:
Catalytic steam reforming of ethanol (SRE) is a promising route for the production of renewable hydrogen (H2). This article reviews the influence of doping supported-catalysts used in SRE on the conversion of ethanol, selectivity for H2, and stability during long reaction periods. In addition, promising new technologies such as membrane reactors and electrochemical reforming for performing SRE are presented.
Resumo:
Nickel and palladium dispersed on titania support were submitted to reductive treatment, under hydrogen, at 200 and 500 ºC. After the reductive thermal treatment the materials were exposed to carbon monoxide (10 Torr) and analyzed in the infrared region. The increasing of the electronic density in the metallic d subshell, produced by the reductive thermal treatment, was monitored by the infrared stretching band shift of carbon monoxide adsorbed and it was interpreted as a consequence of the metal-support interactions. The highest effect was observed for Pd/TiO2 system. From the FTIR spectra was also observed that the hydrogen spillover was stronger on Pd/TiO2 than Ni/TiO2 system.
Resumo:
This work describes the development of an alternative acetate bath for the electrochemical codeposition of Ni-Cu-Fe electrodes at low pH that is stable for several weeks and produces electrodes with good performance for chlor-alkali electrolysis. Physical characterization of the electrode surface was made using X ray absorption spectroscopy (XAS), scanning electron microscopy (SEM) and energy dispersive analysis (EDX). The evaluation of the material as electrocatalyst for the hydrogen evolution reaction (her) was carried out in brine solution (160 g L-1 NaCl + 150 g L-1 NaOH) at different temperatures through steady-state polarization curves. The Ni-Cu-Fe electrodes obtained with this bath have shown low overpotentials for the her, around 0.150 V at 353 K, and good stability under continuous long-term operation for 260 hours. One positive aspect of this cathode is that the polarization behavior of the material shows only one Tafel slope over the temperature range of 298 - 353 K.
Resumo:
This work is directed to the study and evaluation of gas diffusion electrodes as detectors in hydrogen sensors. Electrochemical experiments were carried out with rotating disk electrodes with a thin porous coating of the catalyst as a previous step to select useful parameters for the sensor. An experimental arrangement made in the laboratory that simulates the sensor was found appropriate to detect volumetric hydrogen percentages above 0.25% in mixtures H2:N2. The system shows a linear response for volumetric percentages of hydrogen between 0.25 and 2 %.
Resumo:
A new Cu(II) trimers, [Cu3(dcp)2(H2O)8]. 4DMF, with the ligand 3,5-pyrazoledicarboxylic acid monohydrate (H3dcp) has been prepared by solvent method. Its solid-state structure has been characterized by elemental analysis, thermal analysis (TGA and DSC), and single crystal X-ray diffraction. X-ray crystallographic studies reveal that this complex has extended 1-D,2-D and 3-D supramolecular architectures directed by weak interactions (hydrogen bond and aromatic π-π stacking interaction) leading to a sandwich solid-state structure.