921 resultados para HYDRATED PHOSPHOLIPID-BILAYERS
Resumo:
This paper discusses fundamental concepts for the characterization of Langmuir monolayers and Langmuir-Blodgett (LB) films, with emphasis on investigations of material properties at the molecular level. By way of illustration, results for phospholipid monolayers interacting with the drug dipyridamole are highlighted. These results were obtained with several techniques, including in situ grazing incidence X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, fluorescence microscopy, in addition to surface pressure and surface potential isotherms. Also mentioned are the difficulties in producing Langmuir and LB films from macromolecules, and how molecular-level interactions in mixed polymer LB films can be exploited in sensors.
Resumo:
Nitrophorins represent a unique class of heme proteins that are able to perform the delicate transportation and release of the free-radical gaseous messenger nitric oxide (NO) in a pH-triggered manner. Besides its ability to bind to phospholipid membranes, the N-terminus contains an additional Leu-Pro-Gly stretch, which is a unique sequence trait, and the heme cavity is significantly altered with respect to other nitrophorins. These distinctive features encouraged us to solve the X-ray crystallographic structures of NP7 at low and high pH and bound with different heme ligands (nitric oxide, histamine, imidazole). The overall fold of the lipocalin motif is well preserved in the different X-ray structures and resembles the fold of other nitrophorins. However, a chain-like arrangement in the crystal lattice due to a number of head-to-tail electrostatic stabilizing interactions is found in NP7. Furthermore, the X-ray structures also reveal ligand-dependent changes in the orientation of the heme, as well as in specific interactions between the A-B and G-H loops, which are considered to be relevant for the biological function of nitrophorins. Fast and ultrafast laser triggered ligand rebinding experiments demonstrate the pH-dependent ligand migration within the cavities and the exit route. Finally, the topological distribution of pockets located around the heme as well as from inner cavities present at the rear of the protein provides a distinctive feature in NP7, so that while a loop gated exit mechanism to the solvent has been proposed for most nitrophorins, a more complex mechanism that involves several interconnected gas hosting cavities is proposed for NP7.
Resumo:
This article describes the preparation and characterization of the cellulose/ hydrated zirconium oxide composites prepared by conventional precipitation (PC) and homogeneous solution precipitation (PSH) methods. The composite obtained by the PC method was prepared by using an ammonia solution as the precipitating agent, while the composite obtained by the PSH method was prepared by using urea as the precipitating agent. The adsorption of dichromate ions on the composites was studied using factorial design 2³. The variables were: initial concentration, agitation time and mass of the composite. The data obtained agree better for the composite obtained by the PC method.
Resumo:
The hydrated sodium salt of EDTA, Na2H2Y·2H2O, cannot be used as a primary standard for titrations due to uncertainties in the water content. An alkalimetric titration of the homogenized solid in the presence of a small excess of BaCl2·2H2O allows one to titrate quantitatively the released two hydrogen cations with end-point indication by phenolphthalein or potentiometry. This leads one to calculate the average molar mass of the reagent and its water content, allowing to use it to prepare EDTA standard solutions. One titrated sample led to the formula Na2H2Y·1.876 H2O, and 370.01 g.mol-1 for the average molar mass.
Resumo:
The product of catalytic activity of the enzyme phospholipase A2, which resembles the core unit of animal toxins, on phospholipids is a 1:1 mixture of lysolipid and fatty acid. This mixture was studied by time-resolved simultaneous small- and wide angle x-ray diffraction over the temperature range from 23 to 53.5ºC. An unusually large lamellar structure was observed, with d = 11 nm, contradicting the complex functional dimer model between lysolipid and fatty acid. It can be explained by formation of a "double-bilayer", a new phase consisting of two different bilayers, one formed by lysophospholipid and other by fatty acid, bound together by head group interactions. Its strucutre was confirmed by simulations of the X-ray scattering pattern.
Resumo:
Biogenic silica is used to describe compounds of hydrated silica (SiO2.nH2O), with specific shapes and sizes, deposited in plants. The chemical composition of biogenic silica and its stability in Jaraguá grass was studied in increasing concentration of NaOH. The analytical results demonstrated high concentration of Si, Al, Fe, Mg, P and low of Cu, Cd and Zn in the phytoliths composition. The silica bodies stability in NaOH solution with increasing concentration was different among the shapes and sizes. Silicified stomata and silicified plant tissues were dissolved along with the dumbbells because they are the less stable forms of biogenic silica.
Resumo:
Hydrated compounds prepared in aqueous solution by reaction between amidosulfonic acid [H3NSO3] and suspensions of rare earth hydroxycarbonates [Ln2(OH)x(CO3)y.zH2O] were characterized by elemental analysis (% Ln, % N and % H), infrared spectroscopy (FTIR) and thermogravimetry (TG). The compounds presented the stoichiometry Ln(NH2SO3)3.xH2O (where x = 1, 5, 2.0 or 3.0). The IR spectra showed absorptions characteristic of H2O molecules and NH2SO3 groups. Degree of hydration, thermal decomposition steps and formation of stable intermediates of the type [Ln2(SO4)3] and (Ln2O2SO4), besides formation of their oxides, was determined by thermogravimetry.
Resumo:
The physico-chemical properties and thermal stability in air of Cu(II) 2,3- , 3,5- and 2,6-dimethoxybenzoates were compared and the influence of the position of -OCH3 substituent on their thermal stability was investigated. The complexes are crystalline, hydrated salts with blue colour. The carboxylate ion is a bidentate chelating or bridging group. The thermal stability of analysed Cu(II) dimethoxybenzoates was studied in the temperature range of 293-1173 K. The positions of methoxy- groups in benzene ring influence the thermal properties of studied complexes. Their different thermal properties are markedly connected with the various influence of inductive, mesomeric and steric effects of -OCH3 substituent on the electron density in benzene ring. The magnetic susceptibilities of the complexes were measured over the range of 76-300 K and the magnetic moments were calculated. The results show that they form dimers.
Resumo:
Complexes of Ni(II) 2,3-, 3,5- and 2,6-dimethoxybenzoates have been synthesized, their physico-chemical properties have been compared and the influence of the position of -OCH3 substituent on their properties investigated. The analysed compounds are crystalline, hydrated salts with green colour. The carboxylate ions show a bidentate chelating or bridging coordination modes. The thermal stabilities of Ni(II) dimethoxybenzoates were investigated in air in the range of 293-1173 K. The complexes decompose in three steps, yelding the NiO as the final product of decomposition. Their solubilities in water at 293 K are in the order of 10-2-10-4 mol×dm-3. The magnetic susceptibilities for the analysed dimethoxybenzoates of Ni(II) were measured over the range of 76-303 K and the magnetic moments were calculated. The results reveal that the complexes are the high-spin ones and the ligands form the weak electrostatic field in the octahedral coordination sphere of the central Ni(II) ion. The various position -OCH3 groups in benzene ring cause the different steric, mesomeric and inductive effects on the electron density in benzene ring.
Resumo:
Physico-chemical properties of 3-chloro-2-nitrobenzoates of Co(II), Ni(II) and Cu(II) were synthesized and studied. The complexes were obtained as mono- and dihydrates with a metal ion to ligand ratio of 1 : 2. All analysed 3-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II) and blue for Cu(II) complexes. Their thermal decomposition was studied in the range of 293 523 K, because it was found that on heating in air above 523 K 3-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10-4 10-2 mol / dm³. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 3-chloro-2-nitrobenzoates experimentally determined at 76 303 K change from 3.67µB to 4.61µB for Co(II) complex, from 2.15µB to 2.87µB for Ni(II) 3-chloro-2-nitrobenzoate and from 0.26µB to 1.39µB for Cu(II) complex. 3-Chloro-2-nitrobenzoates of Co(II) and Ni(II) follow the Curie-Weiss law. Complex of Cu(II) forms dimer.
Resumo:
Two series of alkanediyl-a,w-bis (dimethylalkylammonium bromide (n-2-n and n-6-n; n=8, 10,12, and 16) have been synthesized and their micelles properties studied in aqueous solution using pyrene, pyrenecarboxaldehyde (PCA) and 1,8 anilinonaphtalene sulfonic acid sodium salt (ANS) as fluorescent probes. The micelles from these surfactants have been characterized on the basis of the information provided by micelle-solubilized fluorescent probes. The obtained results indicated that the surfactant concentration at which a marked decrease in l max parameter of pyrenecarboxaldehyde (PCA) occurs corresponds to the CMC determined by conductimetric measurements. Changes in the emission spectra of ANS and PCA observed in the submicellar range for both surfactants series (n-2-n and n-6-n) were interpreted as formation of pre-aggregates. It was found that the dimeric surfactants with long spacer (s= 6) form more hydrated aggregates when compared with those formed by the n-2-n and CnTAB surfactants series. This was attributed to a more difficult packing of n-6-n surfactant molecules to form micelles.
Resumo:
2,4 - Dimethoxybenzoates of Mn(II), Co(II) and Cu(II) have been synthesized as hydrated or anyhydrous polycrystalline solids and characterized by elemental analysis, IR spectroscopy, magnetic studies and X-ray diffraction measurements. They possess the following colours: Mn(II) - white, Co(II) - pink and Cu(II) - blue. The carboxylate groups bind as monodentate, or a symmetrical bidentate bridging ligands and tridentate. The thermal stabilities were determined in air at 293-1173K. When heated the hydrated complexes dehydrate to from anhydous salts which are decomposed to the oxides of respective metals. The magnetic susceptibilites of the 2,4-dimethoxybenzoates were measured over the range 76-303 K and their magnetic moments were calculated. The results reveal the complexes of Mn(II), Co(II) to be high-spin complexes and that of Cu(II) to form dimer.
Resumo:
Physico-chemical properties of 3,4-dimethoxybenzoates of Co(II), Cu(II), La(III) and Nd(III) were studied. The complexes were obtained as hydrated or anhydrous polycrystalline solids with a metal ion-ligand mole ratio of 1 : 2 for divalent ions and of 1 : 3 in the case of trivalent cations. Their colours depend on the kind of central ion: pink for Co(II) complex, blue for Cu(II), white for La(III) and violet for Nd(III) complexes. The carboxylate groups in these compounds are monodentate, bidentate bridging or chelating and tridentate ligands. Their thermal decomposition was studied in the range of 293-1173 K. Hydrated complexes lose crystallization water molecules in one step and form anhydrous compounds, that next decompose to the oxides of respective metals. 3,4 - Dimethoxybenzoates of Co(II) is directly decomposed to the appropriate oxide and that of Nd(III) is also ultimately decomposed to its oxide but with the intemediate formation of Nd2O2CO3.. The magnetic moment values of 3,4-dimethoxybenzoates determined in the range of 76-303 K change from 4.22 µB to 4.61 µB for Co(II) complex , from 0.49 µB to 1.17 µB for Cu(II) complex , and from 2.69 µB to 3.15 µB for Nd(III) complex.
Resumo:
The physicochemical properties of 2,4-, and 3,4- dimethoxybenzoates of Cu(II), Co(II) and Nd(III) were studied and compared to observe the -OCH3 substituent positions in benzene ring on the character of complexes. The analysed compounds are crystalline hydrated or anhydrous salts with colours depending on the kind of central ions: blue for Cu(II), pink for Co(II) and violet for Nd(III) complexes. The carboxylate groups bind as monodentate, bidentate bridging or chelating and even tridentate ligands. Their thermal stabilities were studied in air at 293-1173K. When heated the hydrated complexes release the water molecules and form anhydrous compounds which are then decomposed to the oxides of respective metals. Their magnetic moment values were determined in the range of 76-303K. The results reveal the compounds of Nd(III) and Co(II) to be the high-spin and that of Cu(II) forms dimer. The various positions of -OCH3 groups in benzene ring influence some of physicochemical properties of analysed compounds.
Resumo:
The complexes of 4-chlorophenoxyacetates of Nd(III), Gd(III) and Ho(III) have been synthesized as polycrystalline hydrated solids, and characterized by elemental analysis, spectroscopy, magnetic studies and also by X-ray diffraction and thermogravimetric measurements. The analysed complexes have the following colours: violet for Nd(III), white for Gd(III) and cream for Ho(III) compounds. The carboxylate groups bind as bidentate chelating (Ho) or bridging ligands (Nd, Gd). On heating to 1173K in air the complexes decompose in several steps. At first, they dehydrate in one step to form anhydrous salts, that next decompose to the oxides of respective metals. The gaseous products of their thermal decomposition in nitrogen were also determined and the magnetic susceptibilites were measured over the temperature range of 76-303K and the magnetic moments were calculated. The results show that 4-chlorophenoxyacetates of Nd(III), Gd(III) and Ho(III) are high-spin complexes with weak ligand fields. The solubility value in water at 293K for analysed 4-chlorophenoxyacetates is in the order of 10-4mol/dm³.