981 resultados para HUMAN-DISEASE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seladin-1 (SELective Alzheimer's Disease INdicator-1) is an anti-apoptotic gene, which is down-regulated in brain regions affected by Alzheimer's disease (AD). In addition, seladin-1 catalyzes the conversion of desmosterol into cholesterol. Disruption of cholesterol homeostasis in neurons may increase cell susceptibility to toxic agents. Because the hippocampus and the subventricular zone, which are affected in AD, are the unique regions containing stem cells with neurogenic potential in the adult brain, it might be hypothesized that this multipotent cell compartment is the predominant source of seladin-1 in normal brain. In the present study, we isolated and characterized human mesenchymal stem cells (hMSC) as a model of cells with the ability to differentiate into neurons. hMSC were then differentiated toward a neuronal phenotype (hMSC-n). These cells were thoroughly characterized and proved to be neurons, as assessed by molecular and electrophysiological evaluation. Seladin-1 expression was determined and found to be significantly reduced in hMSC-n compared to undifferentiated cells. Accordingly, the total content of cholesterol was decreased after differentiation. These original results demonstrate for the first time that seladin-1 is abundantly expressed by stem cells and appear to suggest that reduced expression in AD might be due to an altered pool of multipotent cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: The remarkable patency of internal mammary artery (MA) grafts compared to saphenous vein (SV) grafts has been related to different biological properties of the two blood vessels. We examined whether proliferation and apoptosis of vascular smooth muscle cells (VSMC) from human coronary artery bypass vessels differ according to patency rates. METHODS AND RESULTS: Proliferation rates to serum or platelet-derived growth factor (PDGF)-BB were lower in VSMC from MA than SV. Surface expression of PDGF beta-receptor was slightly lower, while that of alpha-receptor was slightly higher in MA than SV. Cell cycle distribution, expression of cyclin E, cdk2, p21, p27, p57, and cdk2 kinase activity were identical in PDGF-BB-stimulated cells from MA and SV. However, apoptosis rates were higher in MA than SV determined by lactate dehydrogenase release, DNA fragmentation, and Hoechst 33258 staining. Moreover, caspase inhibitors (Z-VAD-fmk, Boc-D-fmk) abrogated the different proliferation rates of VSMC from MA versus SV. Western blotting and GSK3-beta kinase assay revealed lower Akt activity in VSMC from MA versus SV, while total Akt expression was identical. Adenoviral transduction of a constitutively active Akt mutant abrogated the different proliferation rates of VSMC from MA versus SV. CONCLUSIONS: Higher apoptosis rates due to lower Akt activity rather than different cell cycle regulation account for the lower proliferation of VSMC from MA as compared to SV. VSMC apoptosis may protect MA from bypass graft disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seventy-six human immunodeficiency virus (HIV)-infected patients with Staphylococcus aureus nasal carriage were randomized to treatment groups receiving intranasal mupirocin or placebo twice daily for 5 days. Nasal cultures for S. aureus were obtained at 1, 2, 6, and 10 weeks after therapy. At 1 week, 88% of mupirocin-treated patients had negative nasal cultures compared with 8% in placebo patients (P<.001). The percentage of mupirocin-treated patients with persistently negative nasal cultures decreased over time (63%, 45%, and 29% at 2, 6, and 10 weeks, respectively) but remained significantly greater than the placebo group (3% at 2, 6, and 10 weeks). In mupirocin-treated patients, most (16/19) instances of nasal recolonization were with pretreatment strains (determined by means of by pulsed field gel electrophoresis); mupirocin resistance was not observed. Five days of treatment with mupirocin eliminated S. aureus nasal carriage in HIV-infected patients for several weeks; however, since the effect waned over time, intermittent dosing regimens should be considered for long-term eradication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND ; AIMS: Iron perturbations are frequently observed in nonalcoholic fatty liver disease (NAFLD). We aimed to investigate a potential association of copper status with disturbances of iron homeostasis in NAFLD. METHODS: We retrospectively studied 140 NAFLD patients and 25 control subjects. Biochemical and hepatic iron and copper parameters were analyzed. Hepatic expression of iron regulatory molecules was investigated in liver biopsy specimens by reverse-transcription polymerase chain reaction and Western blot analysis. RESULTS: NAFLD patients had lower hepatic copper concentrations than control subjects (21.9 +/- 9.8 vs 29.6 +/- 5.1 microg/g; P = .002). NAFLD patients with low serum and liver copper concentrations presented with higher serum ferritin levels (606.7 +/- 265.8 vs 224.2 +/- 176.0 mg/L; P < .001), increased prevalence of siderosis in liver biopsy specimens (36/46 vs 10/47 patients; P < .001), and with elevated hepatic iron concentrations (1184.4 +/- 842.7 vs 319.9 +/- 451.3 microg/g; P = .020). Lower serum concentrations of the copper-dependent ferroxidase ceruloplasmin (21.7 +/- 4.1 vs 30.4 +/- 6.4 mg/dL; P < .001) and decreased liver ferroportin (FP-1; P = .009) messenger RNA expression were found in these patients compared with NAFLD patients with high liver or serum copper concentrations. Accordingly, in rats, a reduced dietary copper intake was paralleled by a decreased hepatic FP-1 protein expression. CONCLUSIONS: A significant proportion of NAFLD patients should be considered copper deficient. Our results indicate that copper status is linked to iron homeostasis in NAFLD, suggesting that low copper bioavailability causes increased hepatic iron stores via decreased FP-1 expression and ceruloplasmin ferroxidase activity thus blocking liver iron export in copper-deficient subjects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECT: The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. METHODS: Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. RESULTS: Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. CONCLUSIONS: This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries, yet its pathophysiology is incompletely understood. Small-molecule metabolite screens may offer new insights into disease mechanisms and reveal new treatment targets. Methods Discovery (N = 33) and replication (N = 66) of liver biopsies spanning the range from normal liver histology to non-alcoholic steatohepatitis (NASH) were ascertained ensuring rapid freezing under 30 s in patients. 252 metabolites were assessed using GC/MS. Replicated metabolites were evaluated in a murine high-fat diet model of NAFLD. Results In a two-stage metabolic screening, hydroquinone (HQ, pcombined = 3.0 × 10−4) and nicotinic acid (NA, pcombined = 3.9 × 10−9) were inversely correlated with histological NAFLD severity. A murine high-fat diet model of NAFLD demonstrated a protective effect of these two substances against NAFLD: Supplementation with 1% HQ reduced only liver steatosis, whereas 0.6% NA reduced both liver fat content and serum transaminase levels and induced a complex regulatory network of genes linked to NALFD pathogenesis in a global expression pathway analysis. Human nutritional intake of NA equivalent was also consistent with a protective effect of NA against NASH progression. Conclusion This first small-molecular screen of human liver tissue identified two replicated protective metabolites. Either the use of NA or targeting its regulatory pathways might be explored to treat or prevent human NAFLD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Congenital pseudomyotonia in Chianina cattle is a muscle function disorder very similar to that of Brody disease in humans. Mutations in the human ATP2A1 gene, encoding SERCA1, cause Brody myopathy. The analysis of the collected Chianina pedigree data suggested monogenic autosomal recessive inheritance and revealed that all 17 affected individuals traced back to a single founder. A deficiency of SERCA1 function in skeletal muscle of pseudomyotonia affected Chianina cattle was observed as SERCA1 activity in affected animals was decreased by about 70%. Linkage analysis showed that the mutation was located in the ATP2A1 gene region on BTA25 and subsequent mutation analysis of the ATP2A1 exons revealed a perfectly associated missense mutation in exon 6 (c.491G>A) leading to a p.Arg164His substitution. Arg164 represents a functionally important and strongly conserved residue of SERCA1. This study provides a suitable large animal model for human Brody disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chagas’ disease, also called American Trypanosomiasis, is a vector-borne disease caused by the protozoan parasite Trypanosoma cruzi. T. cruzi is spread by triatomine insects, commonly referred to as ‘kissing bugs.’ After the insect takes a blood meal from its animal or human host, it usually defecates near the bite wound. The parasite is present in the feces, and when rubbed into the bite wound or mucous membranes by the host, infection ensues. Chagas’ disease is highly endemic in Central and South America where it originated. Many people in these endemic areas live in poor conditions surrounded by animals, mainly dogs, that can serve as a possible link to human infection. In Chagas’ endemic countries, dogs can be used as a sentinel to infer risk for human infection. In Texas, the prevalence of Chagas’ and risk for human infection is largely unknown. This study aimed to determine the prevalence of Chagas’ disease in shelter dogs in Houston, Texas and the Rio Grande Valley region by using an immunochromatographic assay (Chagas’ Stat-Pak) to test for the presence of T. cruzi antibodies. Of the 822 samples tested, 26 were found to be positive (3.2%). In both locations, Chagas’ prevalence increased over time. This study found that dogs, especially strays, can serve as sentinels for disease activity. Public health authorities can implement this strategy to understand the level of Chagas’ activity in a defined geographic area and prevent human infection.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tangier disease is characterized by low serum high density lipoproteins and a biochemical defect in the cellular efflux of lipids to high density lipoproteins. ABC1, a member of the ATP-binding cassette family, recently has been identified as the defective gene in Tangier disease. We report here the organization of the human ABC1 gene and the identification of a mutation in the ABC1 gene from the original Tangier disease kindred. The organization of the human ABC1 gene is similar to that of the mouse ABC1 gene and other related ABC genes. The ABC1 gene contains 49 exons that range in size from 33 to 249 bp and is over 70 kb in length. Sequence analysis of the ABC1 gene revealed that the proband for Tangier disease was homozygous for a deletion of nucleotides 3283 and 3284 (TC) in exon 22. The deletion results in a frameshift mutation and a premature stop codon starting at nucleotide 3375. The product is predicted to encode a nonfunctional protein of 1,084 aa, which is approximately half the size of the full-length ABC1 protein. The loss of a Mnl1 restriction site, which results from the deletion, was used to establish the genotype of the rest of the kindred. In summary, we report on the genomic organization of the human ABC1 gene and identify a frameshift mutation in the ABC1 gene of the index case of Tangier disease. These results will be useful in the future characterization of the structure and function of the ABC1 gene and the analysis of additional ABC1 mutations in patients with Tangier disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To determine the mechanism of the cardiac dilatation and reduced contractility of obese Zucker Diabetic Fatty rats, myocardial triacylglycerol (TG) was assayed chemically and morphologically. TG was high because of underexpression of fatty acid oxidative enzymes and their transcription factor, peroxisome proliferator-activated receptor-α. Levels of ceramide, a mediator of apoptosis, were 2–3 times those of controls and inducible nitric oxide synthase levels were 4 times greater than normal. Myocardial DNA laddering, an index of apoptosis, reached 20 times the normal level. Troglitazone therapy lowered myocardial TG and ceramide and completely prevented DNA laddering and loss of cardiac function. In this paper, we conclude that cardiac dysfunction in obesity is caused by lipoapoptosis and is prevented by reducing cardiac lipids.