951 resultados para HIGH-POWER APPLICATIONS
Resumo:
A practical single-carrier (SC) block transmission with frequency domain equalisation (FDE) system can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such Hammerstein channels, the standard SC-FDE scheme no longer works. We propose a novel Bspline neural network based nonlinear SC-FDE scheme for Hammerstein channels. In particular, we model the nonlinear HPA, which represents the complex-valued static nonlinearity of the Hammerstein channel, by two real-valued B-spline neural networks, one for modelling the nonlinear amplitude response of the HPA and the other for the nonlinear phase response of the HPA. We then develop an efficient alternating least squares algorithm for estimating the parameters of the Hammerstein channel, including the channel impulse response coefficients and the parameters of the two B-spline models. Moreover, we also use another real-valued B-spline neural network to model the inversion of the HPA’s nonlinear amplitude response, and the parameters of this inverting B-spline model can be estimated using the standard least squares algorithm based on the pseudo training data obtained as a byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse Bspline neural network model obtained in time domain. The effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels is demonstrated in a simulation study.
Resumo:
In this paper, we investigate half-duplex two-way dual-hop channel state information (CSI)-assisted amplify-and-forward (AF) relaying in the presence of high-power amplifier (HPA) nonlinearity at relays. The expression for the end-to-end signal-to-noise ratio (SNR) is derived as per the modified system model by taking into account the interference caused by relaying scheme and HPA nonlinearity. The system performance of the considered relaying network is evaluated in terms of average symbol error probability (SEP) in Nakagami-$m$ fading channels, by making use of the moment-generating function (MGF) approach. Numerical results are provided and show the effects of several parameters, such as quadrature amplitude modulation (QAM) order, number of relays, HPA parameters, and Nakagami parameter, on performance.
Resumo:
In the first part some information and characterisation about an AC distribution network that feeds traction substations and their possible influences on the DC traction load flow are presented. Those influences are investigated and mathematically modelled. To corroborate the mathematical model, an example is presented and their results are confronted with real measurements.
Resumo:
The cleaning procedure consists of two-step-flashing: (i) cycles of low power flashes T similar to 1200 K) at an oxygen partial pressure of P(o2) = 6 x 10(-8) mbar, to remove the carbon from the surface, and (ii) a single high power flash (T similar to 2200 K), to remove the oxide layer. The removal of carbon from the surface through the chemical reaction with oxygen during low power flash cycles is monitored by thermal desorption spectroscopy. The exposure to O(2) leads to the oxidation of the W surface. Using a high power flash, the volatile W-oxides and the atomic oxygen are desorbed, leaving a clean crystal surface at the end of procedure. The method may also be used for cleaning other refractory metals like Mo, Re and It. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The synthesis of Y(0.9)Er(0.1)Al(3)(BO(3))(4) crystalline powders and vitreous thin films were studied. Precursor solutions were obtained using a modified polymeric precursor method using D-sorbitol as complexant agent. The chemical reactions were described. Y(0.)9Er(0.1)Al(3)(BO(3))(4) composition presents good thermal stability with regard to crystallization. The Y(0.9)Er(0.1)Al(3)(BO(3))(4) crystallized phase can be obtained at 1,150 degrees C, in agreement with other authors. Crack- and porosity-free films were obtained with very small grain size and low RMS roughness. The films thickness revealed to be linearly dependent on precursor solution viscosity, being the value of 25 mPa s useful to prepare high-quality amorphous multi-layers (up to similar to 800 nm) at 740 degrees C during 2 h onto silica substrates by spin coating with a gyrset technology.
Resumo:
Sodium alumino-phosphate glasses co-doped with Yb(3+) and Tm(3+) ions have been prepared with notably low OH(-) content, and characterized from the viewpoint of their spectroscopic properties. In these glasses, Yb(3+) acts as an efficient sensitizer of excitation energy at 0.98 mu m - which can be provided by high power and low cost diode lasers, and subsequently undergoes non-resonant energy transfer to Tm(3+) ions ((2)F(5/2), (3)H(6) --> (2)F(7/2), (3)H(5)). Through this process, the emitting level (3)F(4) is rapidly populated, generating improved emission at 1.8 mu m ((3)F(4) --> (3)H(6)). In order to guarantee the efficiency of such favorable energy transfer, energy losses via multiphonon decay, Yb-Yb radiative trapping, and non- radiative transfer to OH(-) groups were evaluated, and minimized when possible. The dipole - dipole energy transfer microscopic parameters corresponding to Yb(3+) --> Tm(3+), Yb(3+) --> Yb(3+) and Tm(3+) --> Tm(3+) transfers, calculated by the Forster-Dexter model, are C(Yb-Tm) = 2.9 x 10(-40) cm(6) s(-1), C(Yb-Yb) = 42 x 10(-40) cm(6) s(-1) and C(Tm-Tm) = 43 x 10(-40) cm(6) s(-1), respectively.
Resumo:
In this paper, we show that the widely used stationarity tests such as the KPSS test have power close to size in the presence of time-varying unconditional variance. We propose a new test as a complement of the existing tests. Monte Carlo experiments show that the proposed test possesses the following characteristics: (i) In the presence of unit root or a structural change in the mean, the proposed test is as powerful as the KPSS and other tests; (ii) In the presence a changing variance, the traditional tests perform badly whereas the proposed test has high power comparing to the existing tests; (iii) The proposed test has the same size as traditional stationarity tests under the null hypothesis of stationarity. An application to daily observations of return on US Dollar/Euro exchange rate reveals the existence of instability in the unconditional variance when the entire sample is considered, but stability is found in subsamples.
Resumo:
Esta tese busca discutir problemas relacionados às finanças públicas municipais no país. Um aprimoramento de nosso federalismo fiscal, com maior descentralização de recursos e implementação de regras de transferências federativas com maiores incentivos pró-eficiência – aumentando os incentivos pró-obtenção de melhores resultados sociais por parte das unidades subfederadas – pode se revelar instrumento importante na melhoria de nossas condições sociais. Para isto, dividiu-se esta tese em quatro partes distintas. No primeiro capítulo, discutem-se os impactos das receitas petrolíferas sobre as finanças públicas municipais. As mudanças legais ocorridas no país na década de noventa do último século - relativas ao setor petrolífero - levaram a crescente (e concentrada) transferência de recursos do setor para os estados e municípios brasileiros. A forte sensação que estes estariam sendo desperdiçados de alguma forma vem suscitando discussões sobre a necessidade de se reformular sua distribuição. As recentes descobertas de megacampos petrolíferos no pré-sal do litoral brasileiro somente intensificaram este processo. Buscou-se identificar os efeitos destas transferências sobre as variáveis fiscais municipais no país. Detectou-se que não ocorreu substituição tributária, ou seja, estes recursos não diminuíram o esforço arrecadatório dos municípios. Em compensação, tanto os recursos cuja distribuição é bem mais concentrada (referentes aos royalties excedentes) quanto aqueles mais bem-distribuídos (referentes aos royalties originais) levaram as prefeituras a aumentar seus gastos correntes (piorando sua composição do ponto de vista social) e diminuir seus investimentos. O contrário parece ocorrer com os recursos cuja distribuição se dá de forma intermediária (os royalties referentes às participações especiais). No segundo capítulo, discute-se o impacto das receitas petrolíferas sobre a proficiência dos alunos até a quarta série primária das escolas públicas municipais. As receitas petrolíferas – agregadas ou não – não se mostraram estatisticamente significativas na explicação do desempenho observado pelos alunos da quarta série primária das escolas municipais em português ou matemática. Este resultado, entretanto, deve ser olhado com cautela, uma vez que não é trivial identificar como (e o tempo necessário) estes efeitos seriam gerados. Entretanto, diferentes fontes de receitas municipais impactariam de forma diferenciada as proficiências observadas nos testes de português e matemática, explicitando a necessidade de se entender melhor estas diferenças para se desenhar mecanismo mais eficiente de repasse de recursos constitucionais aos municípios. No terceiro capítulo, estudam-se os impactos das emancipações municipais ocorridas na década de 90 sobre o bem-estar das populações locais. Devido à Constituição Federal de 1988, o número de municípios no Brasil multiplicou-se fortemente na década de 90 do último século. Mais de mil municípios foram criados em todo o país, fazendo seu número ultrapassar a casa dos 5.500. Este processo tem sido interpretado de forma bastante negativa. Baseado em evidências anedóticas, se pressupõe que os atores políticos locais o utilizaram para se apropriar de maior parcela dos recursos transferidos de outros níveis governamentais. Entretanto, nenhum esforço mais sistemático foi realizado buscando calcular, de maneira efetiva, os resultados sociais líquidos deste processo. É isto que se busca fazer aqui, utilizando dados sobre os municípios mineiros - cujo número passa de 723 em 1991 para 853 em 2000. Foram detectados impactos positivos relacionados a diversas variáveis educacionais e de saúde. Ao mesmo tempo, o contrário ocorreu com os indicadores de pobreza e indigência. Este resultado mostra que o movimento observado de emancipação municipal talvez tenha sido bastante benéfico, sinalizando para a existência de mercados políticos eficientes nestas localidades, o que indicaria a necessidade de se manter uma maior autonomia local relativa a processos de emancipação de distritos. Por fim, no quarto capítulo, analisam-se os impactos de lei (implementada em Minas Gerais) que buscou aumentar os incentivos pró-eficiência das prefeituras municipais a partir das transferências federativas. Buscando melhorar as condições de vida dos municípios mineiros, o governo estadual mineiro instituiu, em 1995, a lei 12.040, conhecida como Lei Robin Hood. Esta permitia que 25% dos recursos de ICMS a serem distribuídos aos municípios mineiros se dessem sobre resultados observáveis em diversas áreas tais como saúde, educação, conservação ecológica, entre outras. Ou seja, esta instituía, em relação a estas transferências, um contrato de alto poder com os municípios relacionados às políticas públicas implementadas. O estudo destas transferências (relativas à educação e saúde) mostrou resultados dúbios. Resultados positivos relativos à educação e à saúde parecem ocorrer em todo o estado, mas os incentivos dados poderiam ser bem maiores - faz-se necessário um refinamento das regras da partilha destas transferências. Dada a relativa escassez deste tipo de contrato em transferências federativas, seja no Brasil, seja no restante do mundo, este resultado aponta a necessidade de utilização de instrumentos de maior poder nas relações federativas, buscando incrementar as condições de vida locais.
Resumo:
In this paper, we show that the widely used stationarity tests such as the KPSS test has power close to size in the presence of time-varying unconditional variance. We propose a new test as a complement of the existing tests. Monte Carlo experiments show that the proposed test possesses the following characteristics: (i) In the presence of unit root or a structural change in the mean, the proposed test is as powerful as the KPSS and other tests; (ii) In the presence a changing variance, the traditional tests perform badly whereas the proposed test has high power comparing to the existing tests; (iii) The proposed test has the same size as traditional stationarity tests under the null hypothesis of covariance stationarity. An application to daily observations of return on US Dollar/Euro exchange rate reveals the existence of instability in the unconditional variance when the entire sample is considered, but stability is found in sub-samples.
Resumo:
Ceramic filters are cellular structures that can be produced by various techniques, among which we highlight the replication method, or method of polymeric sponge. This method consists of impregnating polymeric foam with ceramic slurry, followed by heat treatment, where will occur decomposition of organic material and the sinter of the ceramic material, resulting in a ceramic whose structure is a replica of the impregnated sponge. Ceramic filters have specific properties that make this type of material very versatile, used in various technological applications such as filters for molten metals and burners, make these materials attractive candidates for high temperature applications. In this work we studied the systems Al2O3-LZSA ceramic filters processed in the laboratory, and commercial Al2O3-SiC ceramics filters, both obtained by the replica method, this work proposes the thermal and mechanical characterization. The sponge used in the processing of filters made in the laboratory was characterized by thermogravimetric analysis. The ceramic filters were characterized by compressive strength, flexural strength at high temperatures, thermal shock, permeability and physical characterization (density and porosity) and microstructural (MEV and X-rays). From the results obtained, the analysis was made of the mechanical behavior of these materials, comparing the model proposed by Gibson and Ashby model and modified the effective area and the tension adjusted, where the modified model adapted itself better to the experimental results, representing better the mechanical behavior of ceramic filters obtained by the replica method
Resumo:
Recent studies are investigating a new class of inorganic materials which arise as a promising option for high performance applications in the field of photoluminescence. Highlight for rare earth (TR +3 ) doped, which have a high luminous efficiency, long decay time and being able to emit radiation in the visible range, specific to each element. In this study, we synthesized ZrO2: Tb +3 , Eu +3 , Tm +3 nanoparticles complex polymerization method (CPM). We investigated the influences caused by the heat treatment temperature and the content of dopants in zirconia photoluminescent behavior. The particles were calcined at temperature of 400, 500 and 600 ° C for two hours and ranged in concentration of dopants 1, 2, 4 and 8 mol% TR +3 . The samples were characterized by thermal analysis, X-ray diffraction, photoluminescence of measurements and uv-visible of spectroscopies. The results of X-ray diffraction confirmed the formation of the tetragonal and cubic phases in accordance with the content of dopants. The photoluminescence spectra show emission in the region corresponding simultaneous to blue (450 nm), green (550 nm) and red (615 nm). According to the results, ZrO2 particles co-doped with rare earth ions is a promising material white emission with a potential application in the field of photoluminescence
Resumo:
This work consists in the development of a theoretical and numerical analysis for frequency selective surfaces (FSS) structures with conducting patch elements, such as rectangular patches, thin dipoles and cross dipoles, on anisotropic dielectric substrates. The analysis is developed for millimeter wave band applications. The analytical formulation is developed in the spectral domain, by using a rigorous technique known as equivalent transmission line method, or immitance approach. The numerical analysis is completed through the use of the Galerkin's technique in the Fourier transform domain, using entire-domain basis functions. In the last decades, several sophisticated analytical techniques have been developed for FSS structure applications. Within these applications, it can be emphasized the use of FSS structures on reflecting antennas and bandpass radomes. In the analysis, the scattered fields of the FSS geometry are related to the surface induced currents on the conducting patches. After the formulation of the scattering problem, the numerical solution is obtained by using the moment method. The choice of the basis functions plays a very important role in the numerical efficiency of the numerical method, once they should provide a very good approximation to the real current distributions on the FSS analyzed structure. Thereafter, the dyadic Green's function components are obtained in order to evaluate the basis functions unknown coefficients. To accomplish that, the Galerkin's numerical technique is used. Completing the formulation, the incident fields are determined through the incident potential, and as a consequence the FSS transmission and reflection characteristics are determined, as function of the resonant frequency and structural parameters. The main objective of this work was to analyze FSS structures with conducting patch elements, such as thin dipoles, cross dipoles and rectangular patches, on anisotropic dielectric substrates, for high frequency applications. Therefore, numerical results for the FSS structure main characteristics were obtained in the millimeter wave bando Some of these FSS characteristics are the resonant
Resumo:
Rare earth elements have recently been involved in a range of advanced technologies like microelectronics, membranes for catalytic conversion and applications in gas sensors. In the family of rare earth elements like cerium can play a key role in such industrial applications. However, the high cost of these materials and the control and efficiencies associated processes required for its use in advanced technologies, are a permanent obstacle to its industrial development. In present study was proposed the creation of phases based on rare earth elements that can be used because of its thermal behavior, ionic conduction and catalytic properties. This way were studied two types of structure (ABO3 and A2B2O7), the basis of rare earths, observing their transport properties of ionic and electronic, as well as their catalytic applications in the treatment of methane. For the process of obtaining the first structure, a new synthesis method based on the use of EDTA citrate mixture was used to develop a precursor, which undergone heat treatment at 950 ° C resulted in the development of submicron phase BaCeO3 powders. The catalytic activity of perovskite begins at 450 ° C to achieve complete conversion at 675 ° C, where at this temperature, the catalytic efficiency of the phase is maximum. The evolution of conductivity with temperature for the perovskite phase revealed a series of electrical changes strongly correlated with structural transitions known in the literature. Finally, we can establish a real correlation between the high catalytic activity observed around the temperature of 650 ° C and increasing the oxygen ionic conductivity. For the second structure, showed clearly that it is possible, through chemical processes optimized to separate the rare earth elements and synthesize a pyrochlore phase TR2Ce2O7 particular formula. This "extracted phase" can be obtained directly at low cost, based on complex systems made of natural minerals and tailings, such as monazite. Moreover, this method is applied to matters of "no cost", which is the case of waste, making a preparation method of phases useful for high technology applications
Resumo:
Surfaces of silicon wafers implanted with N and C, respectively, and aluminum 5052 implanted with N alone by plasma immersion ion implantation WHO were probed by a nanoindentor and analyzed by the contact-angle method to provide information on surface nanohardness and wettability. Silicon nitride and silicon carbide are important ceramic materials for microelectronics, especially for high-temperature applications. These compounds can be synthesized by high-dose ion implantation. The nanohardness of a silicon sample implanted with 12-keV nitrogen PIII (with 3 X 10(17) cm(-2) dose) increased by 10% compared to the unimplanted sample, in layers deeper than the regions where the formation of the Si,N, compound occurred. A factor of 2.5 increase in hardness was obtained for C-implanted Si wafer at 35 keV (with 6 X 10(17) cm(-2) dose), again deeper than the SiC-rich layer, Both compounds are in the amorphous state and their hardness is much lower than that of the crystalline compounds, which require an annealing process after ion implantation. In the same targets, the contact angle increased by 65% and 35% for N- and C-implanted samples, respectively. Compared to the Si target, the nitrogen PIII-irradiated Al 5052 (wish 15 keV) showed negligible change in its hydrophobic character after ion implantation. Its near-surface nanohardness measurement showed a slight increase for doses of 1 X 10(17) cm(-2). We have been searching for an AlN layer of the order of 1000 A thick, using such a low-energy PIII process, but oxide formation during processing has precluded its synthesis. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Electrochemical corrosion measurements of AISI H13 steel treated by Pill process in 3.5% (wt) NaCl solution were investigated. So far the corrosion behavior of AISI H 13 steel by Pill has not been studied. The electrochemical results are correlated with the surface morphology, nitrogen content and hardness of the nitride layer. Ion implantation of nitrogen into H 13 steel was carried out by Pill technique. SEM examination revealed a generalized corrosion and porosity over all analyzed sample surfaces. Penetration of nitrogen reaching more than 20 gm was achieved at 450 degrees C and hardness as high as 1340 HV (factor of 2.7 enhancement over standard tempered and annealed H 13) was reached by a high power, 9 h Pill treatment. The corrosion behavior of the samples was studied by potentiodynamic polarization method. The noblest corrosion behavior was observed for the samples treated by PIII at 450 degrees C, during 9 h. Anodic branches of polarization curves of PIII processed samples show a passive region associated with the formation of a protective film. The passive region current density of PIII treated H13 samples (3.5 x 10(-6) A/cm(2)) is about 270 times lower than the one of untreated specimens, which demonstrates the higher corrosion resistance for the Pill treated H 13 samples. (c) 2007 Elsevier B.V. All rights reserved.