997 resultados para Growing stage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately one third of the world population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. A better understanding of the pathogen biology is crucial to develop new tools/strategies to tackle its spread and treatment. In the host macrophages, the pathogen is exposed to reactive oxygen species, known to damage dGTP and GTP to 8-oxo-dGTP and 8-oxo-GTP, respectively. Incorporation of the damaged nucleotides in nucleic acids is detrimental to organisms. MutT proteins, belonging to a class of Nudix hydrolases, hydrolyze 8-oxo-G nucleoside triphosphates/diphosphates to the corresponding nucleoside monophosphates and sanitize the nucleotide pool. Mycobacteria possess several MutT proteins. However, a functional homolog of Escherichia coli MutT has not been identified. Here, we characterized MtuMutT1 and Rv1700 proteins of M. tuberculosis. Unlike other MutT proteins, MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP, and 8-oxo-GTP to 8-oxo-GDP. Rv1700 then converts them to the corresponding nucleoside monophosphates. This observation suggests the presence of a two-stage mechanism of 8-oxo-dGTP/8-oxo-GTP detoxification in mycobacteria. MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP with a K-m of similar to 50 mu M and V-max of similar to 0.9 pmol/min per ng of protein, and Rv1700 converts 8-oxo-dGDP to 8-oxo-dGMP with a K-m of similar to 9.5 mu M and V-max of similar to 0.04 pmol/min per ng of protein. Together, MtuMutT1 and Rv1700 offer maximal rescue to E. coli for its MutT deficiency by decreasing A to C mutations (a hallmark of MutT deficiency). We suggest that the concerted action of MtuMutT1 and Rv1700 plays a crucial role in survival of bacteria against oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of a large number of spectral bands in the hyperspectral images increases the capability to distinguish between various physical structures. However, they suffer from the high dimensionality of the data. Hence, the processing of hyperspectral images is applied in two stages: dimensionality reduction and unsupervised classification techniques. The high dimensionality of the data has been reduced with the help of Principal Component Analysis (PCA). The selected dimensions are classified using Niche Hierarchical Artificial Immune System (NHAIS). The NHAIS combines the splitting method to search for the optimal cluster centers using niching procedure and the merging method is used to group the data points based on majority voting. Results are presented for two hyperspectral images namely EO-1 Hyperion image and Indian pines image. A performance comparison of this proposed hierarchical clustering algorithm with the earlier three unsupervised algorithms is presented. From the results obtained, we deduce that the NHAIS is efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A DC micro-grid essentially consists of power ports, bidirectional power converter and a controller structure that enables the control of dynamic power flow. In this paper, a prototype of a micro-grid structure using a recently proposed multi-winding transformer based power converter has been implemented. The power converter topology is further extended to multiple transformer cores in order to form a growing micro-grid structure. Additionally, modifications have been made in order to incorporate a battery charge controller with the main power circuit. All the other advantages of the power converter and its control scheme are still preserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the different issues limiting the wider application of monolithic hydroxyapatite (HA) as an ideal bone replacement material is the lack of reasonably good electrical transport properties. The comprehensive electrical property characterization to evaluate the efficacy of processing parameters in achieving the desired combination of electroactive properties is considered as an important aspect in the development of HA-based bioactive material. In this perspective, the present work reports the temperature (RT-200 degrees C) and frequency (100 Hz-1 MHz) dependent dielectric properties and AC conductivity for a range of HA-CaTiO3 (HA-CT) composites, densified using both conventional pressureless sintering in air as well as spark plasma sintering in vacuum. Importantly, the AC conductivity of spark plasma sintered ceramics similar to upto 10(-5) (Omega cm)(-1)] are found to be considerably higher than the corresponding pressureless sintered ceramics similar to upto 10(-8) (Omega cm)(-1)]. Overall, the results indicate the processing route dependent functional properties of HA-CaTiO3 composites as well as related advantages of spark plasma sintering route. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene expression in living systems is inherently stochastic, and tends to produce varying numbers of proteins over repeated cycles of transcription and translation. In this paper, an expression is derived for the steady-state protein number distribution starting from a two-stage kinetic model of the gene expression process involving p proteins and r mRNAs. The derivation is based on an exact path integral evaluation of the joint distribution, P(p, r, t), of p and r at time t, which can be expressed in terms of the coupled Langevin equations for p and r that represent the two-stage model in continuum form. The steady-state distribution of p alone, P(p), is obtained from P(p, r, t) (a bivariate Gaussian) by integrating out the r degrees of freedom and taking the limit t -> infinity. P(p) is found to be proportional to the product of a Gaussian and a complementary error function. It provides a generally satisfactory fit to simulation data on the same two-stage process when the translational efficiency (a measure of intrinsic noise levels in the system) is relatively low; it is less successful as a model of the data when the translational efficiency (and noise levels) are high.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question of whether the dramatic slowing down of the dynamics of glass-forming liquids near the structural glass transition is caused by the growth of one or more correlation lengths has received much attention in recent years. Several proposals have been made for both static and dynamic length scales that may be responsible for the growth of timescales as the glass transition is approached. These proposals are critically examined with emphasis on the dynamic length scale associated with spatial heterogeneity of local dynamics and the static point-to-set or mosaic length scale of the random first order transition theory of equilibrium glass transition. Available results for these length scales, obtained mostly from simulations, are summarized, and the relation of the growth of timescales near the glass transition with the growth of these length scales is examined. Some of the outstanding questions about length scales in glass-forming liquids are discussed, and studies in which these questions may be addressed are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing threats due to increased use of small-caliber armor piercing projectiles demand the development of new light-weight body armor materials. In this context, TiB2 appears to be a promising ceramic material. However, poor sinterability and low fracture toughness remain two major issues for TiB2. In order to address these issues together, Ti as a sinter-aid is used to develop TiB2-(x wt pct Ti), (x = 10, 20) homogeneous composites and a bi-layered composite (BLC) with each layer having Ti content of 10 and 20 wt pct. The present study uniquely demonstrates the efficacy of two-stage spark plasma sintering route to develop dense TiB2-Ti composites with an excellent combination of nanoscale hardness (similar to 36 GPa) and indentation fracture toughness (similar to 12 MPa m(1/2)). In case of BLC, these properties are not compromised w.r.t. homogeneous composites, suggesting the retention of baseline material properties even in the bi-layer design due to optimal relief of residual stresses. The better indentation toughness of TiB2-(10 wt pct Ti) and TiB2-(20 wt pct Ti) composites can be attributed to the observed crack deflection/arrest, indicating better damage tolerance. Transmission electron microscope investigation reveals the presence of dense dislocation networks and deformation twins in alpha-Ti at the grain boundaries and triple pockets, surrounded by TiB2 grains. The dynamic strength of around 4 GPa has been measured using Split Hopkinson Pressure Bar tests in a reproducible manner at strain rates of the order of 600 s(-1). The damage progression under high strain rate has been investigated by acquiring real time images for the entire test duration using ultra-high speed imaging. An attempt has been made to establish microstructure-property correlation and a simple analysis based on Mohr-Coulomb theory is used to rationalize the measured strength properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite decades of research, it remains to be established whether the transformation of a liquid into a glass is fundamentally thermodynamic or dynamic in origin. Although observations of growing length scales are consistent with thermodynamic perspectives, the purely dynamic approach of the Dynamical Facilitation (DF) theory lacks experimental support. Further, for vitrification induced by randomly freezing a subset of particles in the liquid phase, simulations support the existence of an underlying thermodynamic phase transition, whereas the DF theory remains unexplored. Here, using video microscopy and holographic optical tweezers, we show that DF in a colloidal glass-forming liquid grows with density as well as the fraction of pinned particles. In addition, we observe that heterogeneous dynamics in the form of string-like cooperative motion emerges naturally within the framework of facilitation. Our findings suggest that a deeper understanding of the glass transition necessitates an amalgamation of existing theoretical approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study simulates a two-stage silica gel + water adsorption desalination (AD) and chiller system. The adsorber system thermally compresses the low pressure steam generated in the evaporator to the condenser pressure in two stages. Unlike a standalone adsorption chiller unit which operates in a closed cycle the present system is an open cycle wherein the condensed desalinated water is not fed back to the evaporator. The mathematical relations formulated in the current study are based on conservation of mass and energy along with isotherm relation and kinetics for RD-type silica gel + water pair. Various constitutive relations for each component namely the evaporator, adsorber and condenser are integrated in the model. The dynamics of heat exchanger are modeled using LMTD method, and LDF model is used to predict the dynamic characteristic of the adsorber bed. The system performance indicators namely, specific cooling capacity (SCC), specific daily water production (SDWP) and coefficient of performance (COP) are used as objective functions to optimize the system. The novelty of the present work is in introduction of inter-stage pressure as a new parameter for optimizing the two-stage operation of AD chiller system. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants emit volatile organic compounds (VOCs) from most parts of their anatomy. Conventionally, the volatiles of leaves, flowers, fruits and seeds have been investigated separately. This review presents an integrated perspective of volatiles produced by fruits and seeds in the context of selection on the whole plant. It suggests that fruit and seed volatiles may only be understood in the light of the chemistry of the whole plant. Fleshy fruit may be viewed as an ecological arena within which several evolutionary games are being played involving fruit VOCs. Fruit odour and colour may be correlated and interact via multimodal signalling in influencing visits by frugivores. The hypothesis of volatile crypsis in the evolution of hard seeds as protection against volatile diffusion and perception by seed predators is reviewed. Current views on the role of volatiles in ant dispersal of seeds or myrmecochory are summarised, especially the suggestion that ants are being manipulated by plants in the form of a sensory trap while providing this service. Plant VOC production is presented as an emergent phenotype that could result from multiple selection pressures acting on various plant parts; the ``plant'' phenotype and VOC profile may receive significant contributions from symbionts within the plant. Viewing the plant as a holobiont would benefit an understanding of the emergent plant phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transformation of flowing liquids into rigid glasses is thought to involve increasingly cooperative relaxation dynamics as the temperature approaches that of the glass transition. However, the precise nature of this motion is unclear, and a complete understanding of vitrification thus remains elusive. Of the numerous theoretical perspectives(1-4) devised to explain the process, random first-order theory (RFOT; refs 2,5) is a well-developed thermodynamic approach, which predicts a change in the shape of relaxing regions as the temperature is lowered. However, the existence of an underlying `ideal' glass transition predicted by RFOT remains debatable, largely because the key microscopic predictions concerning the growth of amorphous order and the nature of dynamic correlations lack experimental verification. Here, using holographic optical tweezers, we freeze a wall of particles in a two-dimensional colloidal glass-forming liquid and provide direct evidence for growing amorphous order in the form of a static point-to-set length. We uncover the non-monotonic dependence of dynamic correlations on area fraction and show that this non-monotonicity follows directly from the change in morphology and internal structure of cooperatively rearranging regions(6,7). Our findings support RFOT and thereby constitute a crucial step in distinguishing between competing theories of glass formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed steady and unsteady experimental measurements and analysis were performed on a Single stage Transonic Axial Compressor with asymmetric rotor tip clearance for studying the compressor stall phenomena. The installed compressor had asymmetric tip clearance around the rotor casing varying from about 0.65mm to 1.25mm. A calibrated 5-hole aerodynamic probe was traversed radially at exit of rotor and showed the characteristics of increased flow angle at lower mass flow rates for all the speeds. Mach number distribution and boundary layer effects were also clearly captured. Unsteady measurements for velocity were carried out to study the stall cell behavior using a single component calibrated hotwire probe oriented in axial and tangential directions for choke/free flow and near stall conditions. The hotwire probe was traversed radially across the annulus at inlet to the compressor and showed that the velocity fluctuations were dissimilar when probe was aligned axial and tangential to the flow. Averaged velocities across the annulus showed the reduction in velocity as stall was approached. Axial mean flow velocity decreased across the annulus for all the speeds investigated. Tangential velocity at free flow condition was higher at the tip region due to larger radius. At stall condition, the tangential velocity showed decreased velocities at the tip and slightly increased velocities at the hub section indicating that the flow has breakdown at the tip region of the blade and fluid is accelerated below the blockage zone. The averaged turbulent intensity in axial and tangential flow directions increased from free flow to stall condition for all compressor rated speeds. Fast Fourier Transform (FFT) of the raw signals at stall flow condition showed stall cell and its corresponding frequency of occurrence. The stalling frequency of about half of rotational speed of the rotor along with large tip clearance suggests that modal type stall inception was occurring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first objective of this paper is to show that a single-stage adsorption based cooling-cum-desalination system cannot be used if air cooled heat rejection is used under tropical conditions. This objective is achieved by operating a silica gel + water adsorption chiller first in a single-stage mode and then in a 2-stage mode with 2 beds/stage in each case. The second objective is to improve upon the simulation results obtained earlier by way of empirically describing the thermal wave phenomena during switching of operation of beds between adsorption and desorption and vice versa. Performance indicators, namely, cooling capacity, coefficient of performance and desalinated water output are extracted for various evaporator pressures and half cycle times. The improved simulation model is found to interpret experimental results more closely than the earlier one. Reasons for decline in performance indicators between theoretical and actual scenarios are appraised. (C) 2015 Elsevier Ltd and IIR. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study breakdown characteristics in shallow-trench isolation (STI)-type drain-extended MOSFETs (DeMOS) fabricated using a low-power 65-nm triple-well CMOS process with a thin gate oxide. Experimental data of p-type STI-DeMOS device showed distinct two-stage behavior in breakdown characteristics in both OFF-and ON-states, unlike the n-type device, causing a reduction in the breakdown voltage and safe operating area. The first-stage breakdown occurs due to punchthrough in the vertical structure formed by p-well, deep n-well, and p-substrate, whereas the second-stage breakdown occurs due to avalanche breakdown of lateral n-well/p-well junction. The breakdown characteristics are also compared with the STI-DeNMOS device structure. Using the experimental results and advanced TCAD simulations, a complete understanding of breakdown mechanisms is provided in this paper for STI-DeMOS devices in advanced CMOS processes.