954 resultados para Grouping Genetic Algorithms


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scaling problems which afflict attempts to optimise neural networks (NNs) with genetic algorithms (GAs) are disclosed. A novel GA-NN hybrid is introduced, based on the bumptree, a little-used connectionist model. As well as being computationally efficient, the bumptree is shown to be more amenable to genetic coding lthan other NN models. A hierarchical genetic coding scheme is developed for the bumptree and shown to have low redundancy, as well as being complete and closed with respect to the search space. When applied to optimising bumptree architectures for classification problems the GA discovers bumptrees which significantly out-perform those constructed using a standard algorithm. The fields of artificial life, control and robotics are identified as likely application areas for the evolutionary optimisation of NNs. An artificial life case-study is presented and discussed. Experiments are reported which show that the GA-bumptree is able to learn simulated pole balancing and car parking tasks using only limited environmental feedback. A simple modification of the fitness function allows the GA-bumptree to learn mappings which are multi-modal, such as robot arm inverse kinematics. The dynamics of the 'geographic speciation' selection model used by the GA-bumptree are investigated empirically and the convergence profile is introduced as an analytical tool. The relationships between the rate of genetic convergence and the phenomena of speciation, genetic drift and punctuated equilibrium arc discussed. The importance of genetic linkage to GA design is discussed and two new recombination operators arc introduced. The first, linkage mapped crossover (LMX) is shown to be a generalisation of existing crossover operators. LMX provides a new framework for incorporating prior knowledge into GAs.Its adaptive form, ALMX, is shown to be able to infer linkage relationships automatically during genetic search.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To be competitive in contemporary turbulent environments, firms must be capable of processing huge amounts of information, and effectively convert it into actionable knowledge. This is particularly the case in the marketing context, where problems are also usually highly complex, unstructured and ill-defined. In recent years, the development of marketing management support systems has paralleled this evolution in informational problems faced by managers, leading to a growth in the study (and use) of artificial intelligence and soft computing methodologies. Here, we present and implement a novel intelligent system that incorporates fuzzy logic and genetic algorithms to operate in an unsupervised manner. This approach allows the discovery of interesting association rules, which can be linguistically interpreted, in large scale databases (KDD or Knowledge Discovery in Databases.) We then demonstrate its application to a distribution channel problem. It is shown how the proposed system is able to return a number of novel and potentially-interesting associations among variables. Thus, it is argued that our method has significant potential to improve the analysis of marketing and business databases in practice, especially in non-programmed decisional scenarios, as well as to assist scholarly researchers in their exploratory analysis. © 2013 Elsevier Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

* Work partially supported by contribution of EU commission Under The Fifth Framework Programme, project “MolCoNet” IST-2001-32008.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the concepts of the intelligent system for aiding of the module assembly technology. The first part of this paper presents a project of intelligent support system for computer aided assembly process planning. The second part includes a coincidence description of the chosen aspects of implementation of this intelligent system using technologies of artificial intelligence (artificial neural networks, fuzzy logic, expert systems and genetic algorithms).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AMS Subj. Classification: 90C27, 05C85, 90C59

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation presents a system-wide approach, based on genetic algorithms, for the optimization of transfer times for an entire bus transit system. Optimization of transfer times in a transit system is a complicated problem because of the large set of binary and discrete values involved. The combinatorial nature of the problem imposes a computational burden and makes it difficult to solve by classical mathematical programming methods. ^ The genetic algorithm proposed in this research attempts to find an optimal solution for the transfer time optimization problem by searching for a combination of adjustments to the timetable for all the routes in the system. It makes use of existing scheduled timetables, ridership demand at all transfer locations, and takes into consideration the randomness of bus arrivals. ^ Data from Broward County Transit are used to compute total transfer times. The proposed genetic algorithm-based approach proves to be capable of producing substantial time savings compared to the existing transfer times in a reasonable amount of time. ^ The dissertation also addresses the issues related to spatial and temporal modeling, variability in bus arrival and departure times, walking time, as well as the integration of scheduling and ridership data. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The applications of micro-end-milling operations have increased recently. A Micro-End-Milling Operation Guide and Research Tool (MOGART) package has been developed for the study and monitoring of micro-end-milling operations. It includes an analytical cutting force model, neural network based data mapping and forecasting processes, and genetic algorithms based optimization routines. MOGART uses neural networks to estimate tool machinability and forecast tool wear from the experimental cutting force data, and genetic algorithms with the analytical model to monitor tool wear, breakage, run-out, cutting conditions from the cutting force profiles. ^ The performance of MOGART has been tested on the experimental data of over 800 experimental cases and very good agreement has been observed between the theoretical and experimental results. The MOGART package has been applied to the micro-end-milling operation study of Engineering Prototype Center of Radio Technology Division of Motorola Inc. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Construction projects are complex endeavors that require the involvement of different professional disciplines in order to meet various project objectives that are often conflicting. The level of complexity and the multi-objective nature of construction projects lend themselves to collaborative design and construction such as integrated project delivery (IPD), in which relevant disciplines work together during project conception, design and construction. Traditionally, the main objectives of construction projects have been to build in the least amount of time with the lowest cost possible, thus the inherent and well-established relationship between cost and time has been the focus of many studies. The importance of being able to effectively model relationships among multiple objectives in building construction has been emphasized in a wide range of research. In general, the trade-off relationship between time and cost is well understood and there is ample research on the subject. However, despite sustainable building designs, relationships between time and environmental impact, as well as cost and environmental impact, have not been fully investigated. The objectives of this research were mainly to analyze and identify relationships of time, cost, and environmental impact, in terms of CO2 emissions, at different levels of a building: material level, component level, and building level, at the pre-use phase, including manufacturing and construction, and the relationships of life cycle cost and life cycle CO2 emissions at the usage phase. Additionally, this research aimed to develop a robust simulation-based multi-objective decision-support tool, called SimulEICon, which took construction data uncertainty into account, and was capable of incorporating life cycle assessment information to the decision-making process. The findings of this research supported the trade-off relationship between time and cost at different building levels. Moreover, the time and CO2 emissions relationship presented trade-off behavior at the pre-use phase. The results of the relationship between cost and CO2 emissions were interestingly proportional at the pre-use phase. The same pattern continually presented after the construction to the usage phase. Understanding the relationships between those objectives is a key in successfully planning and designing environmentally sustainable construction projects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The applications of micro-end-milling operations have increased recently. A Micro-End-Milling Operation Guide and Research Tool (MOGART) package has been developed for the study and monitoring of micro-end-milling operations. It includes an analytical cutting force model, neural network based data mapping and forecasting processes, and genetic algorithms based optimization routines. MOGART uses neural networks to estimate tool machinability and forecast tool wear from the experimental cutting force data, and genetic algorithms with the analytical model to monitor tool wear, breakage, run-out, cutting conditions from the cutting force profiles. The performance of MOGART has been tested on the experimental data of over 800 experimental cases and very good agreement has been observed between the theoretical and experimental results. The MOGART package has been applied to the micro-end-milling operation study of Engineering Prototype Center of Radio Technology Division of Motorola Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs. In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug. Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Launching centers are designed for scientific and commercial activities with aerospace vehicles. Rockets Tracking Systems (RTS) are part of the infrastructure of these centers and they are responsible for collecting and processing the data trajectory of vehicles. Generally, Parabolic Reflector Radars (PRRs) are used in RTS. However, it is possible to use radars with antenna arrays, or Phased Arrays (PAs), so called Phased Arrays Radars (PARs). Thus, the excitation signal of each radiating element of the array can be adjusted to perform electronic control of the radiation pattern in order to improve functionality and maintenance of the system. Therefore, in the implementation and reuse projects of PARs, modeling is subject to various combinations of excitation signals, producing a complex optimization problem due to the large number of available solutions. In this case, it is possible to use offline optimization methods, such as Genetic Algorithms (GAs), to calculate the problem solutions, which are stored for online applications. Hence, the Genetic Algorithm with Maximum-Minimum Crossover (GAMMC) optimization method was used to develop the GAMMC-P algorithm that optimizes the modeling step of radiation pattern control from planar PAs. Compared with a conventional crossover GA, the GAMMC has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, the GAMMC prevents premature convergence, increases population fitness and reduces the processing time. Therefore, the GAMMC-P uses a reconfigurable algorithm with multiple objectives, different coding and genetic operator MMC. The test results show that GAMMC-P reached the proposed requirements for different operating conditions of a planar RAV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a hybrid technique of frequency selective surfaces project (FSS) on a isotropic dielectric layer, considering various geometries for the elements of the unit cell. Specifically, the hybrid technique uses the equivalent circuit method in conjunction with genetic algorithm, aiming at the synthesis of structures with response single-band and dual-band. The equivalent circuit method allows you to model the structure by using an equivalent circuit and also obtaining circuits for different geometries. From the obtaining of the parameters of these circuits, you can get the transmission and reflection characteristics of patterned structures. For the optimization of patterned structures, according to the desired frequency response, Matlab™ optimization tool named optimtool proved to be easy to use, allowing you to explore important results on the optimization analysis. In this thesis, numeric and experimental results are presented for the different characteristics of the analyzed geometries. For this, it was determined a technique to obtain the parameter N, which is based on genetic algorithms and differential geometry, to obtain the algebraic rational models that determine values of N more accurate, facilitating new projects of FSS with these geometries. The optimal results of N are grouped according to the occupancy factor of the cell and the thickness of the dielectric, for modeling of the structures by means of rational algebraic equations. Furthermore, for the proposed hybrid model was developed a fitness function for the purpose of calculating the error occurred in the definitions of FSS bandwidths with transmission features single band and dual band. This thesis deals with the construction of prototypes of FSS with frequency settings and band widths obtained with the use of this function. The FSS were initially reviewed through simulations performed with the commercial software Ansoft Designer ™, followed by simulation with the equivalent circuit method for obtaining a value of N in order to converge the resonance frequency and the bandwidth of the FSS analyzed, then the results obtained were compared. The methodology applied is validated with the construction and measurement of prototypes with different geometries of the cells of the arrays of FSS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a hybrid technique of frequency selective surfaces project (FSS) on a isotropic dielectric layer, considering various geometries for the elements of the unit cell. Specifically, the hybrid technique uses the equivalent circuit method in conjunction with genetic algorithm, aiming at the synthesis of structures with response single-band and dual-band. The equivalent circuit method allows you to model the structure by using an equivalent circuit and also obtaining circuits for different geometries. From the obtaining of the parameters of these circuits, you can get the transmission and reflection characteristics of patterned structures. For the optimization of patterned structures, according to the desired frequency response, Matlab™ optimization tool named optimtool proved to be easy to use, allowing you to explore important results on the optimization analysis. In this thesis, numeric and experimental results are presented for the different characteristics of the analyzed geometries. For this, it was determined a technique to obtain the parameter N, which is based on genetic algorithms and differential geometry, to obtain the algebraic rational models that determine values of N more accurate, facilitating new projects of FSS with these geometries. The optimal results of N are grouped according to the occupancy factor of the cell and the thickness of the dielectric, for modeling of the structures by means of rational algebraic equations. Furthermore, for the proposed hybrid model was developed a fitness function for the purpose of calculating the error occurred in the definitions of FSS bandwidths with transmission features single band and dual band. This thesis deals with the construction of prototypes of FSS with frequency settings and band widths obtained with the use of this function. The FSS were initially reviewed through simulations performed with the commercial software Ansoft Designer ™, followed by simulation with the equivalent circuit method for obtaining a value of N in order to converge the resonance frequency and the bandwidth of the FSS analyzed, then the results obtained were compared. The methodology applied is validated with the construction and measurement of prototypes with different geometries of the cells of the arrays of FSS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Variable reluctance motors have been increasingly used as an alternative for variable speed and high speed drives in many industrial applications, due to many advantages like the simplicity of construction, robustness, and low cost. The most common applications in recent years are related to aeronautics, electric and hybrid vehicles and wind power generation. This paper explores the theory, operation, design procedures and analysis of a variable reluctance machine. An iterative design methodology is introduced and used to design a 1.25 kW prototype. For the analysis of the machine two methods are used, an analytical method and the finite element simulation. The results obtained by both methods are compared. The results of finite element simulation are used to determine the inductance profiles and torque of the prototype. The magnetic saturation is examined visually and numerically in four critical points of the machine. The data collected in the simulation allow the verification of design and operating limits for the prototype. Moreover, the behavior of the output quantities is analyzed (inductance, torque and magnetic saturation) by variation of physical dimensions of the motor. Finally, a multiobjective optimization using Differential Evolution algorithms and Genetic Algorithms for switched reluctance machine design is proposed. The optimized variables are rotor and stator polar arcs, and the goals are to maximize the average torque, the average torque per copper losses and the average torque per core volume. Finally, the initial design and optimized design are compared.