980 resultados para Grimson, Alejandro
Resumo:
McArdle disease is arguably the paradigm of exercise intolerance in humans. This disorder is caused by inherited deficiency of myophosphorylase, the enzyme isoform that initiates glycogen breakdown in skeletal muscles. Because patients are unable to obtain energy from their muscle glycogen stores, this disease provides an interesting model of study for exercise physiologists, allowing insight to be gained into the understanding of glycogen-dependent muscle functions. Of special interest in the field of muscle physiology and sports medicine are also some specific (if not unique) characteristics of this disorder, such as the so-called 'second wind' phenomenon, the frequent exercise-induced rhabdomyolysis and myoglobinuria episodes suffered by patients (with muscle damage also occurring under basal conditions), or the early appearance of fatigue and contractures, among others. In this article we review the main pathophysiological features of this disorder leading to exercise intolerance as well as the currently available therapeutic possibilities.
Resumo:
2.134 JCR (2015) Q3, 74/124 Medicine, research & experimental, 81/161 Biotechnology & applied microbiology
Resumo:
The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis driven discovery in humans. Hypotheses underlying molecular mechanisms of disease, and gene/tissue function can be tested in rodents in order to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. Firstly we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis". Secondly we review specific transgenic and knock-out mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.
Resumo:
Exercise may be described as a polypill to prevent and/or treat almost every chronic disease, with obvious benefits such as its low cost and practical lack of adverse effects. Implementing physical activity interventions in public health is therefore a goal at the medical, social, and economic levels. This chapter describes the importance of health promotion through physical activity and discusses the impacts of exercise on the most prevalent chronic diseases, namely metabolic syndrome-related disorders, cardiovascular diseases, cancer, and Alzheimer's disease. For each of these chronic conditions, we discuss the epidemiological evidence supporting a beneficial role of exercise, provide guidelines for exercise prescription, and describe the biological mechanisms whereby exercise exerts its modulatory effects.
Resumo:
In this reported clinical case, a healthy and well-trained male subject [aged 37 years, maximal oxygen uptake (V[Combining Dot Above]O2max) 64 mL·kg·min] ran for 23 hours and 35 minutes covering 160 km (6.7 km/h average running speed). The analysis of hematological and biochemical parameters 3 days before the event, just after termination of exercise, and after 24 and 48 hours of recovery revealed important changes on muscle and liver function, and hemolysis. The analysis of urine sediments showed an increment of red and white blood cells filtrations, compatible with transient nephritis. After 48 hours, most of these alterations were recovered. Physicians and health professionals who monitor such athletic events should be aware that these athletes could exhibit transient symptoms compatible with severe pathologies and diseases, although the genesis of these blood and urinary abnormalities are attributable to transient physiological adaptations rather to pathological status.
Resumo:
The interest in the study of ventricular function has grown considerably in the last decades. In this review, we analyse the extreme values of ventricular function as obtained with Doppler echocardiography. We mainly focus on the parameters that have been used throughout the history of Doppler echocardiography to assess left ventricular (LV) systolic and diastolic function. The ‘athlete's heart’ would be the highest expression of ventricular function whereas its lowest expression is represented by the failing heart, independently from the original aetiology leading to this condition. There are, however, morphological similarities (dilation and hypertrophy) between the athlete's and the failing heart, which emerge as physiological and pathophysiological adaptations, respectively. The introduction of new assessment techniques, specifically speckle tracking, may provide new insight into the properties that determine ventricular filling, specifically left ventricular twisting. The concept of ventricular function must be always considered, although it may not be always possible to distinguish the normal heart of sedentary individuals from that of highly trained hearts based solely on echocardiographic or basic studies.
Resumo:
The intent of this review is to summarize current body of knowledge on the potential implication of the xanthine oxidase pathway (XO) on skeletal muscle damage. The possible involvement of the XO pathway in muscle damage is exemplified by the role of XO inhibitors (e.g., allopurinol) in attenuating muscle damage. Reliance on this pathway (as well as on the purine nucleotide cycle) could be exacerbated in conditions of low muscle glycogen availability. Thus, we also summarize current hypotheses on the etiology of both baseline and exertional muscle damage in McArdle disease, a condition caused by inherited deficiency of myophosphorylase. Because myophosphorylase catalyzes the first step of muscle glycogen breakdown, patients are unable to obtain energy from their muscle glycogen stores. Finally, we provide preliminary data from our laboratory on the potential implication of the XO pathway in the muscle damage that is commonly experienced by these patients.
Resumo:
The increasing aging of our societies is accompanied by a pandemic of obesity and related cardiometabolic disorders. Progressive dysfunction of the white adipose tissue is increasingly recognized as an important hallmark of the aging process which in turn contributes to metabolic alterations, multi-organ damage, and a systemic pro-inflammatory state ('inflammaging'). On the other hand, obesity, the paradigm of adipose tissue dysfunction, shares numerous biological similarities with the normal aging process such as chronic inflammation and multi-system alterations. Accordingly, understanding the interplay between accelerated aging related to obesity and adipose tissue dysfunction is critical to gain insight into the aging process in general as well as into the pathophysiology of obesity and other related conditions. Here we postulate the concept of 'adipaging' to illustrate the common links between aging and obesity and the fact that, to a great extent, obese adults are prematurely aged individuals.
Resumo:
A recent meta-analysis by Iskandar et al. (1) nicely showed that endurance athletes have larger left atrial (LA) diameters compared with control subjects. Yet only 9 of 54 studies included in their analysis reported LA volume values corrected for body surface area (BSA). In fact, few studies have determined LA volume in young athletes, and, to the best of our knowledge, no study has reported this variable in older athletes. This is an important question given the growing debate about the potential deleterious effects of long-term strenuous endurance exercise on the human heart, notably the higher risk of atrial fibrillation (AF), a condition for which both atrial dilation and the normal aging process are thought to be potential causative mechanisms (2). Thus, we aimed to assess the long-term consequences of endurance exercise on LA volume in athletes who were highly competitive at younger ages and are still active. To this end, we compared BSA-corrected LA volumes determined with late gadolinium enhancement magnetic resonance imaging (LGE-MRI) in former elite endurance athletes and sedentary control subjects.
Resumo:
McArdle disease is a metabolic disorder caused by pathogenic mutations in the PYGM gene. Timely diagnosis can sometimes be difficult with direct genomic analysis, which requires additional studies of cDNA from muscle transcripts. Although the "nonsense-mediated mRNA decay" (NMD) eliminates tissue-specific aberrant transcripts, there is some residual transcription of tissue-specific genes in virtually all cells, such as peripheral blood mononuclear cells (PBMCs).We studied a subset of the main types of PYGM mutations (deletions, missense, nonsense, silent, or splicing mutations) in cDNA from easily accessible cells (PBMCs) in 12 McArdle patients.Analysis of cDNA from PBMCs allowed detection of all mutations. Importantly, the effects of mutations with unknown pathogenicity (silent and splicing mutations) were characterized in PBMCs. Because the NMD mechanism does not seem to operate in nonspecific cells, PBMCs were more suitable than muscle biopsies for detecting the pathogenicity of some PYGM mutations, notably the silent mutation c.645G>A (p.K215=), whose effect in the splicing of intron 6 was unnoticed in previous muscle transcriptomic studies.We propose considering the use of PBMCs for detecting mutations that are thought to cause McArdle disease, particularly for studying their actual pathogenicity.
Resumo:
Depression is a major medical and social problem. Here we review current body of knowledge on the benefits of exercise as an effective strategy for both the prevention and treatment of this condition. We also analyze the biological pathways involved in such potential benefits, which include changes in neurotrophic factors, oxidative stress and inflammation, telomere length, brain volume and microvessels, neurotransmitters or hormones. We also identify major caveats in this field of research: further studies are needed to identify which are the most appropriate types of exercise interventions (intensity, duration, or frequency) to treat and prevent depression.
Resumo:
We recently generated a knock-in mouse model (PYGM p.R50X/p.R50X) of McArdle disease (myophosphorylase deficiency). One mechanistic approach to unveil the molecular alterations caused by myophosphorylase deficiency, which is arguably the paradigm of 'exercise intolerance', is to compare the skeletal-muscle tissue of McArdle, heterozygous, and healthy (wild type (wt)) mice. We analyzed in quadriceps muscle of p.R50X/p.R50X (n=4), p.R50X/wt (n=6) and wt/wt mice (n=5) (all male, 8 wk-old) molecular markers of energy-sensing pathways, oxidative phosphorylation (OXPHOS) and autophagy/proteasome systems, oxidative damage and sarcoplamic reticulum (SR) Ca handling. We found a significant group effect for total AMPK (tAMPK) and ratio of phosphorylated (pAMPK)/tAMPK (P=0.012 and 0.033), with higher mean values in p.R50X/p.R50X mice vs. the other two groups. The absence of massive accumulation of ubiquitinated proteins, autophagosomes or lysosomes in p.R50X/p.R50X mice suggested no major alterations in autophagy/proteasome systems. Citrate synthase activity was lower in p.R50X/p.R50X mice vs. the other two groups (P=0.036) but no statistical effect existed for respiratory chain complexes. We found higher levels of 4-hydroxy-2-nonenal-modified proteins in p.R50X/p.R50X and p.R50X/wt mice compared with the wt/wt group (P=0.011). Sarco(endo)plasmic reticulum ATPase 1 (SERCA1) levels detected at 110kDa tended to be higher in p.R50X/p.R50X and p.R50X/wt mice compared with wt/wt animals (P=0.076), but their enzyme activity was normal. We also found an accumulation of phosphorylated SERCA1 in p.R50X/p.R50X animals. Myophosphorylase deficiency causes alterations in sensory energetic pathways together with some evidence of oxidative damage and alterations in Ca handling but with no major alterations in OXPHOS capacity or autophagy/ubiquitination pathways, which suggests that the muscle tissue of patients is likely to adapt overall favorably to exercise training interventions.
Resumo:
La crisis financiera que se inició en el año 2008 ha obligado a repensar la teoría económica y a cuestionar las políticas económicas que se han aplicado para solventarla. Para los teóricos del decrecimiento la crisis financiera no es más que una manifestación de otras crisis más profundas que socavan el propio sistema capitalista, como son la medioambiental, el agotamiento de recursos, las diferencias norte-sur y la demográfica. Por eso, los defensores del decrecimiento plantean unas transformaciones profundas en la sociedad, que desandando el camino del crecimiento y del consumismo, se busquen nuevas sendas de sostenibilidad para el planeta y las personas que recorramos de nuevo. Desde este trabajo se plantea la necesidad de un cambio de rumbo y se cuestionan los modelos actuales que solo buscan en última estancia el crecer económicamente.
Resumo:
UPNa. Instituto de Agrobiotecnología. Laboratorio de Biofilms Microbianos.
Resumo:
De acuerdo a la normativa de TFEs el repositorio no puede dar acceso a este trabajo. Para consultarlo póngase en contacto con el tutor del trabajo. Puede acceder al resumen del mismo pinchando en el pdf adjunto