980 resultados para Grid code
Resumo:
High-resolution UCLES/AAT spectra are presented for nine B-type supergiants in the SMC, chosen on the basis that they may show varying amounts of nuclear-synthetically processed material mixed to their surface. These spectra have been analysed using a new grid of approximately 12 000 non-LTE line blanketed tlusty model atmospheres to estimate atmospheric parameters and chemical composition. The abundance estimates for O, Mg and Si are in excellent agreement with those deduced from other studies, whilst the low estimate for C may reflect the use of the C II doublet at 4267 Å. The N estimates are approximately an order of magnitude greater than those found in unevolved B-type stars or H II regions but are consistent with the other estimates in AB-type supergiants. These results have been combined with results from a unified model atmosphere analysis of UVES/VLT spectra of B-type supergiants (Trundle et al. 2004, A&A, 417, 217) to discuss the evolutionary status of these objects. For two stars that are in common with those discussed by Trundle et al., we have undertaken a careful comparison in order to try to understand the relative importance of the different uncertainties present in such analyses, including observational errors and the use of static or unified models. We find that even for these relatively luminous supergiants, tlusty models yield atmospheric parameters and chemical compositions similar to those deduced from the unified code fastwind.
Resumo:
Collision strengths for all transitions up to and including the n = 5 levels of Al XIII have been computed in the LS coupling scheme using the R-matrix code. All partial waves with angular momentum L less than or equal to 45 have been included, and resonances have been resolved in a fine energy grid in the threshold region. Collision strengths are tabulated at energies above thresholds in the range 162.30 less than or equal to E less than or equal to 220.0 Ry, and results for the 1s-2s and 1s-2p transitions are compared with those of previous authors. Additionally, effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities, are tabulated over a wide temperature range of 4.40 less than or equal to log T-e less than or equal to 6.40 K.
Resumo:
The t[(11;19)(p22;q23)] translocation, which gives rise to the MLL-ENL fusion protein, is commonly found in infant acute leukemias of both the myeloid and lymphoid lineage. To investigate the molecular mechanism of immortalization by MLL-ENL we established a Tet-regulatable system of MLL-ENL expression in primary hematopoietic progenitor cells. Immortalized myeloid cell lines were generated, which are dependent on continued MLL-ENL expression for their survival and proliferation. These cells either terminally differentiate or die when MLL-ENL expression is turned off with doxycycline. The expression profile of all 39 murine Hox genes was analyzed in these cells by real-time quantitative PCR. This analysis showed that loss of MLL-ENL was accompanied by a reduction in the expression of multiple Hoxa genes. By comparing these changes with Hox gene expression in cells induced to differentiate with granulocyte colony-stimulating factor, we show for the first time that reduced Hox gene expression is specific to loss of MLL-ENL and is not a consequence of differentiation. Our data also suggest that the Hox cofactor Meis-2 can substitute for Meis-1 function. Thus, MLL-ENL is required to initiate and maintain immortalization of myeloid progenitors and may contribute to leukemogenesis by aberrantly sustaining the expression of a "Hox code" consisting of Hoxa4 to Hoxa11.
Resumo:
The utilization of the computational Grid processor network has become a common method for researchers and scientists without access to local processor clusters to avail of the benefits of parallel processing for compute-intensive applications. As a result, this demand requires effective and efficient dynamic allocation of available resources. Although static scheduling and allocation techniques have proved effective, the dynamic nature of the Grid requires innovative techniques for reacting to change and maintaining stability for users. The dynamic scheduling process requires quite powerful optimization techniques, which can themselves lack the performance required in reaction time for achieving an effective schedule solution. Often there is a trade-off between solution quality and speed in achieving a solution. This paper presents an extension of a technique used in optimization and scheduling which can provide the means of achieving this balance and improves on similar approaches currently published.
Resumo:
WebCom-G is a fledgling Grid Operating System, designed to provide independent service access through interoperability with existing middlewares. It offers an expressive programming model that automatically handles task synchronisation – load balancing, fault tolerance, and task allocation are handled at the WebCom-G system level – without burdening the application writer. These characteristics, together with the ability of its computing model to mix evaluation strategies to match the characteristics of the geographically dispersed facilities and the overall problem- solving environment, make WebCom-G a promising grid middleware candidate.