986 resultados para Graded Quantum Yang-baxter Reflection Equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The truncation errors associated with finite difference solutions of the advection-dispersion equation with first-order reaction are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation and a temporally and spatially weighted parametric approach is used for differentiating among the various finite difference schemes. The numerical truncation errors are defined using Peclet and Courant numbers and a new Sink/Source dimensionless number. It is shown that all of the finite difference schemes suffer from truncation errors. Tn particular it is shown that the Crank-Nicolson approximation scheme does not have second order accuracy for this case. The effects of these truncation errors on the solution of an advection-dispersion equation with a first order reaction term are demonstrated by comparison with an analytical solution. The results show that these errors are not negligible and that correcting the finite difference scheme for them results in a more accurate solution. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the magnetoresistance oscillation phenomena in the Bechgaard salts (TMTSF)(2)X, where X = ClO4, PF6, and AsF6 in pulsed magnetic fields to 51 T. Of particular importance is the observation of a new magnetoresistance oscillation for X = ClO4 in its quenched state. In the absence of any Fermi-surface reconstruction due to anion order at low temperatures, all three materials exhibit nonmonotonic temperature dependence of the oscillation amplitude in the spin-density-wave (SDW) state. We discuss a model where, below a characteristic temperature T* within the SDW state, a magnetic breakdown gap opens. [S0163-1829(99)00904-2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical potential of adsorbed film inside cylindrical mesopores is dependent on the attractive interactions between the adsorbed molecules and adsorbent, the curvature of gas/adsorbed phase interface, and surface tension. A state equation of the adsorbed film is proposed to take into account the above factors. Nitrogen adsorption on model adsorbents, MCM-41, which exhibit uniform cylindrical channels, are used to verify the theoretical analysis. The proposed theory is capable of describing the important features of adsorption processes in cylindrical mesopores. According to this theory, at a given relative pressure, the smaller the pore radius is, the thicker the adsorbed film will be. The thickening of adsorbed films in the pores as the vapor pressure increases inevitably causes an increase in the interface curvature, which consequently leads to capillary condensation. Besides, this study confirmed that the interface tension depends substantially on the interface curvature in small mesopores. A quantitative relationship between the condensation pressure and the pore radius can be derived from the state equation and used to predict the pore radius from a condensation pressure, or vice versa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a new version of the density-matrix renormalization group we determine the phase diagram of a model of an antiferromagnetic Heisenberg spin chain where the spins interact with quantum phonons. A quantum phase transition from a gapless spin-fluid state to a gapped dimerized phase occurs at a nonzero value of the spin-phonon coupling. The transition is in the same universality class as that of a frustrated spin chain, to which the model maps in the diabatic limit. We argue that realistic modeling of known spin-Peierls materials should include the effects of quantum phonons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a nonlinear wave equation for a signal beam which is coupled to a pump beam by two-wave-mixing in a photorefractive crystal. This equation describes self-focusing of the signal beam. We compare two-wave-mixing induced spatial self-focusing of single-pass experiments in a diffusion-type photorefractive crystal and of a photorefractive oscillator using the same crystal. We observe that the nonlinear refractive index change in the oscillator is decreased while increasing resonator losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The graded-fermion algebra and quasispin formalism are introduced and applied to obtain the gl(m\n)down arrow osp(m\n) branching rules for the two- column tensor irreducible representations of gl(m\n), for the case m less than or equal to n(n > 2). In the case m < n, all such irreducible representations of gl(m\n) are shown to be completely reducible as representations of osp(m\n). This is also shown to be true for the case m=n, except for the spin-singlet representations, which contain an indecomposable representation of osp(m\n) with composition length 3. These branching rules are given in fully explicit form. (C) 1999 American Institute of Physics. [S0022-2488(99)04410-2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater waves, that is, water table fluctuations, are a natural phenomenon in coastal aquifers. They represent an important part of the interaction between the ocean and aquifer and affect the mass exchange between them. This paper presents a new groundwater wave equation. Because it includes the effects of vertical flows and capillarity, the new equation is applicable to both intermediate-depth aquifers and high-frequency waves. Compared with the wave equation derived by Nielsen ed al. [1997], the present equation provides a closer representation of groundwater waves. In particular, it predicts high-frequency water table fluctuations as observed in the field. A validation of the new equation has been carried out by comparing the analytical solutions to it with predictions from direct simulations using the numerical model SUTRA. The effects of various physical parameters and their relative importance are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the quantum and classical dynamics of a single trapped ion subject to nonlinear kicks derived from a periodic sequence of Gaussian laser pulses. We show that the classical system exhibits: diffusive growth in the energy, or heating,'' while quantum mechanics suppresses this heating. This system may be realized in current single trapped-ion experiments with the addition of near-field optics to introduce tightly focused laser pulses into the trap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel method of performing quantum logic gates in trapped ion quantum computers which does not require the ions to be cooled down to the ground state of their vibrational modes, thereby avoiding one of the principal experimental difficulties encountered in realizing this technology. Our scheme employs adiabatic passages and a phase shift conditional on the phonon number state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the level-one irreducible highest weight representations of U-q[gl(1\1)] and associated q-vertex operators. We obtain the exchange relations satisfied by these vertex operators. The characters and supercharacters associated with these irreducible representations are calculated'. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the results of spin ladder models associated with the Lie algebras su(2(n)) to the case of the orthogonal and symplectic algebras o(2(n)), sp(2(n)) where n is the number of legs for the system. Two classes of models are found whose symmetry, either orthogonal or symplectic, has an explicit n dependence. Integrability of these models is shown for an arbitrary coupling of XX-type rung interactions and applied magnetic field term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the quantum theory of three fields interacting via parametric and repulsive quartic couplings. This can be applied to treat photonic chi((2)) and chi((3)) interactions, and interactions in atomic Bose-Einstein condensates or quantum Fermi gases, describing coherent molecule formation together with a-wave scattering. The simplest two-particle quantum solitons or bound-state solutions of the idealized Hamiltonian, without a momentum cutoff, are obtained exactly. They have a pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with a momentum cutoff. The parametric quantum solitons have much more realistic length scales and binding energies than chi((3)) quantum solitons, and the resulting effects could potentially be experimentally tested in highly nonlinear optical parametric media or interacting matter-wave systems. N-particle quantum solitons and the ground state energy are analyzed using a variational approach. Applications to atomic/molecular Bose-Einstein condensates (BEC's) are given, where we predict the possibility of forming coupled BEC solitons in three space dimensions, and analyze superchemistry dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that an arbitrary system described by two dipole moments exhibits coherent superpositions of internal states that can be completely decoupled fi om the dissipative interactions (responsible for decoherence) and an external driving laser field. These superpositions, known as dark or trapping states, can he completely stable or can coherently interact with the remaining states. We examine the master equation describing the dissipative evolution of the system and identify conditions for population trapping and also classify processes that can transfer the population to these undriven and nondecaying states. It is shown that coherent transfers are possible only if the two systems are nonidentical, that is the transitions have different frequencies and/or decay rates. in particular, we find that the trapping conditions can involve both coherent and dissipative interactions, and depending on the energy level structure of the system, the population can be trapped in a linear superposition of two or more bare states, a dressed state corresponding to an eigenstate of the system plus external fields or, in some cases. in one of the excited states of the system. A comprehensive analysis is presented of the different processes that are responsible for population trapping, and we illustrate these ideas with three examples of two coupled systems: single V- and Lambda-type three-level atoms and two nonidentical tao-level atoms, which are known to exhibit dark states. We show that the effect of population trapping does not necessarily require decoupling of the antisymmetric superposition from the dissipative interactions. We also find that the vacuum-induced coherent coupling between the systems could be easily observed in Lambda-type atoms. Our analysis of the population trapping in two nonidentical atoms shows that the atoms can be driven into a maximally entangled state which is completely decoupled from the dissipative interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the level-one irreducible highest weight representations of the quantum affine superalgebra U-q[sl((N) over cap\1)], and calculate their characters and supercharacters. We obtain bosonized q-vertex operators acting on the irreducible U-q[sl((N) over cap\1)] modules and derive the exchange relations satisfied by the vertex operators. We give the bosonization of the multicomponent super t-J model by using the bosonized vertex operators. (C) 2000 American Institute of Physics. [S0022- 2488(00)00508-9].