871 resultados para Glucose transporter 4
Resumo:
To maintain euglycemia in healthy organisms, hepatic glucose production is increased during fasting and decreased during the postprandial period. This whole process is supported by insulin levels. These responses are associated with the insulin signaling pathway and the reduction in the activity of key gluconeogenic enzymes, resulting in a decrease of hepatic glucose production. On the other hand, defects in the liver insulin signaling pathway might promote inadequate suppression of gluconeogenesis, leading to hyperglycemia during fasting and after meals. The hepatocyte nuclear factor 4, the transcription cofactor PGC1-α, and the transcription factor Foxo1 have fundamental roles in regulating gluconeogenesis. The loss of insulin action is associated with the production of pro-inflammatory biomolecules in obesity conditions. Among the molecular mechanisms involved, we emphasize in this review the participation of TRB3 protein (a mammalian homolog of Drosophila tribbles), which is able to inhibit Akt activity and, thereby, maintain Foxo1 activity in the nucleus of hepatocytes, inducing hyperglycemia. In contrast, physical exercise has been shown as an important tool to reduce insulin resistance in the liver by reducing the inflammatory process, including the inhibition of TRB3 and, therefore, suppressing gluconeogenesis. The understanding of these new mechanisms by which physical exercise regulates glucose homeostasis has critical importance for the understanding and prevention of diabetes.
Resumo:
This study focused on understanding the signaling mechanisms leading to GLUT-4 translocation and increased skeletal-muscle glucose uptake that follow creatine (Cr) supplementation in type 2 diabetes (n = 10). AMPK-alpha protein content presented a tendency to be higher (p = 0.06) after Cr supplementation (5 g/d for 12w). The changes in AMPK-alpha protein content significantly related (p < 0.001) to the changes in GLUT-4 translocation (r = 0.78) and Hb1Ac levels (r = -0.68), suggesting that AMPK signaling may be implicated in the effects of supplementation on glucose uptake in type 2 diabetes.
Resumo:
Background: Kinins participate in the pathophysiology of obesity and type 2 diabetes by mechanisms which are not fully understood. Kinin B-1 receptor knockout mice (B-1(-/-)) are leaner and exhibit improved insulin sensitivity. Methodology/Principal Findings: Here we show that kinin B-1 receptors in adipocytes play a role in controlling whole body insulin action and glucose homeostasis. Adipocytes isolated from mouse white adipose tissue (WAT) constitutively express kinin B-1 receptors. In these cells, treatment with the B-1 receptor agonist des-Arg(9)-bradykinin improved insulin signaling, GLUT4 translocation, and glucose uptake. Adipocytes from B-1(-/-) mice showed reduced GLUT4 expression and impaired glucose uptake at both basal and insulin-stimulated states. To investigate the consequences of these phenomena to whole body metabolism, we generated mice where the expression of the kinin B-1 receptor was limited to cells of the adipose tissue (aP2-B-1/B-1(-/-)). Similarly to B-1(-/-) mice, aP2-B-1/B-1(-/-) mice were leaner than wild type controls. However, exclusive expression of the kinin B1 receptor in adipose tissue completely rescued the improved systemic insulin sensitivity phenotype of B-1(-/-) mice. Adipose tissue gene expression analysis also revealed that genes involved in insulin signaling were significantly affected by the presence of the kinin B-1 receptor in adipose tissue. In agreement, GLUT4 expression and glucose uptake were increased in fat tissue of aP2-B-1/B-1(-/-) when compared to B-1(-/-) mice. When subjected to high fat diet, aP2-B-1/B-1(-/-) mice gained more weight than B-1(-/-) littermates, becoming as obese as the wild types. Conclusions/Significance: Thus, kinin B-1 receptor participates in the modulation of insulin action in adipocytes, contributing to systemic insulin sensitivity and predisposition to obesity.
Resumo:
OBJECTIVE: The study goal was to compare the efficacy of expressed breast milk (EBM) versus 25% glucose on pain responses of late preterm infants during heel lancing. METHODS: In a noninferiority randomized controlled trial, a total of 113 newborns were randomized to receive EBM (experimental group [EG]) or 25% glucose (control group [CG]) before undergoing heel lancing. The primary outcome was pain intensity (Premature Infant Pain Profile [PIPP]) and a 10% noninferiority margin was established. Secondary outcomes were incidence of cry and percentage of time spent crying and adverse events. Intention-to-treat (ITT) analysis was used. RESULTS: Groups were similar regarding demographics and clinical characteristics, except for birth weight and weight at data collection day. There were lower pain scores in the CG over 3 minutes after lancing (P<.001). A higher number of infants in the CG had PIPP scores indicative of minimal pain or absence of pain (P = .002 and P = .003 on ITT analysis) at 30 seconds after lancing, and the mean difference in PIPP scores was 3 (95% confidence interval: 1.507-4.483). Lower incidence of cry (P = .001) and shorter duration of crying (P = .014) were observed for CG. Adverse events were benign and self-limited, and there was no significant difference between groups (P = .736 and P = .637 on ITT analysis). CONCLUSIONS: Results based on PIPP scores and crying time indicate poorer effects of EBM compared with 25% glucose during heel lancing. Additional studies exploring the vol and administration of EBM and its combination with other strategies such as skin-to-skin contact and sucking are necessary. Pediatrics 2012;129:664-670
Resumo:
OBJECTIVE: Glucose intolerance is frequently associated with an altered plasma lipid profile and increased cardiovascular disease risk. Nonetheless, lipid metabolism is scarcely studied in normolipidemic glucose-intolerant patients. The aim of this study was to investigate whether important lipid metabolic parameters, such as the kinetics of LDL free and esterified cholesterol and the transfer of lipids to HDL, are altered in glucose-intolerant patients with normal plasma lipids. METHODS: Fourteen glucose-intolerant patients and 15 control patients were studied; none of the patients had cardiovascular disease manifestations, and they were paired for age, sex, race and co-morbidities. A nanoemulsion resembling a LDL lipid composition (LDE) labeled with C-14-cholesteryl ester and H-3-free cholesterol was intravenously injected, and blood samples were collected over a 24-h period to determine the fractional clearance rate of the labels by compartmental analysis. The transfer of free and esterified cholesterol, triglycerides and phospholipids from the LDE to HDL was measured by the incubation of the LDE with plasma and radioactivity counting of the supernatant after chemical precipitation of non-HDL fractions. RESULTS: The levels of LDL, non-HDL and HDL cholesterol, triglycerides, apo A1 and apo B were equal in both groups. The 14 C-esterified cholesterol fractional clearance rate was not different between glucose-intolerant and control patients, but the H-3-free- cholesterol fractional clearance rate was greater in glucose-intolerant patients than in control patients. The lipid transfer to HDL was equal in both groups. CONCLUSION: In these glucose-intolerant patients with normal plasma lipids, a faster removal of LDE free cholesterol was the only lipid metabolic alteration detected in our study. This finding suggests that the dissociation of free cholesterol from lipoprotein particles occurs in normolipidemic glucose intolerance and may participate in atherogenic signaling.
Resumo:
We aimed to investigate the possible role of creatine (CR) supplementation in counteracting dexamethasone-induced muscle wasting and insulin resistance in rats. Also, we examined whether CR intake would modulate molecular pathways involved in muscle remodeling and insulin signaling. Animals were randomly divided into four groups: (1) dexamethasone (DEX); (2) control pair-fed (CON-PF); (3) dexamethasone plus CR (DEX-CR); and (4) CR pair-fed (CR-PF). Dexamethasone (5 mg/kg/day) and CR (5 g/kg/day) were given via drinking water for 7 days. Plantaris and extensor digitorum longus (EDL) muscles were removed for analysis. Plantaris and EDL muscle mass were significantly reduced in the DEX-CR and DEX groups when compared with the CON-PF and CR-PF groups (P < 0.05). Dexamethasone significantly decreased phospho-Ser(473)-Akt protein levels compared to the CON-PF group (P < 0.05) and CR supplementation aggravated this response (P < 0.001). Serum glucose was significantly increased in the DEX group when compared with the CON-PF group (DEX 7.8 +/- A 0.6 vs. CON-PF 5.2 +/- A 0.5 mmol/l; P < 0.05). CR supplementation significantly exacerbated hyperglycemia in the dexamethasone-treated animals (DEX-CR 15.1 +/- A 2.4 mmol/l; P < 0.05 vs. others). Dexamethasone reduced GLUT-4 translocation when compared with the CON-PF and CR-PF (P < 0.05) groups and this response was aggravated by CR supplementation (P < 0.05 vs. others). In conclusion, supplementation with CR resulted in increased insulin resistance and did not attenuate muscle wasting in rats treated with dexamethasone. Given the contrast with the results of human studies that have shown benefits of CR supplementation on muscle atrophy and insulin sensitivity, we suggest caution when extrapolating this animal data to human subjects.
Resumo:
Background: In this study we evaluated the effects of carnitine and vitamin E supplementation on blood glucose levels in young rats submitted to exhaustive exercise stress. Methods: Wistar rats were divided into four groups: 1) control group; 2) exercise stress group; 3) exercise stress + Vitamin E and; 4) exercise stress + carnitine group. Rats from the group 3 and 4 were treated with gavage administration of 1 mL of Vitamin E (5mg/kg) and carnitine (5mg/kg) for seven consecutive days. Animals from groups 2, 3 and 4 were submitted to a bout of swimming exhaustive exercise stress. We analyzed blood glucose levels after exercise stress. Results: Blood glucose levels after exercise stress were significantly increased in the groups treated with Vitamine E and carnitine (control group: 98.7 +/- 9mg/dL vs. stress group: 84.2 +/- 11 mg/dL vs. carnitine + stress group: 147.4 +/- 15 mg/dL vs. vintamin E + stress: 158.3 +/- 7 mg/dL; p<0.0001). Conclusion: Vitamin E and carnitine supplementation attenuate the hypoglycemia induced by exercise in young rats submitted to exhaustive exercise stress.
Resumo:
It is well established that the development of insulin resistance shows a temporal sequence in different organs and tissues. Moreover, considering that the main aspect of insulin resistance in liver is a process of glucose overproduction from gluconeogenesis, we investigated if this metabolic change also shows temporal sequence. For this purpose, a well-established experimental model of insulin resistance induced by high-fat diet (HFD) was used. The mice received HFD (HFD group) or standard diet (COG group) for 1, 7, 14 or 56?days. The HFD group showed increased (P?<?0.05 versus COG) epididymal, retroperitoneal and inguinal fat weight from days 1 to 56. In agreement with these results, the HFD group also showed higher body weight (P?<?0.05 versus COG) from days 7 to 56. Moreover, the changes induced by HFD on liver gluconeogenesis were progressive because the increment (P?<?0.05 versus COG) in glucose production from l-lactate, glycerol, l-alanine and l-glutamine occurred 7, 14, 56 and 56 days after the introduction of the HFD schedule, respectively. Furthermore, glycaemia and cholesterolemia increased (P?<?0.05 versus COG) 14?days after starting the HFD schedule. Taken together, the results suggest that the intensification of liver gluconeogenesis induced by an HFD is not a synchronous all-or-nothing process but is specific for each gluconeogenic substrate and is integrated in a temporal manner with the progressive augmentation of fasting glycaemia. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
De Angelis K, Senador DD, Mostarda C, Irigoyen MC, Morris M. Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice. Am J Physiol Regul Integr Comp Physiol 302: R950-R957, 2012. First published February 8, 2012; doi: 10.1152/ajpregu.00450.2011.-Consumption of high levels of fructose in humans and animals leads to metabolic and cardiovascular dysfunction. There are questions as to the role of the autonomic changes in the time course of fructose-induced dysfunction. C57/BL male mice were given tap water or fructose water (100 g/l) to drink for up to 2 mo. Groups were control (C), 15-day fructose (F15), and 60-day fructose (F60). Light-dark patterns of arterial pressure (AP) and heart rate (HR), and their respective variabilities were measured. Plasma glucose, lipids, insulin, leptin, resistin, adiponectin, and glucose tolerance were quantified. Fructose increased systolic AP (SAP) at 15 and 60 days during both light (F15: 123 +/- 2 and F60: 118 +/- 2 mmHg) and dark periods (F15: 136 +/- 4 and F60: 136 +/- 5 mmHg) compared with controls (light: 111 +/- 2 and dark: 117 +/- 2 mmHg). SAP variance (VAR) and the low-frequency component (LF) were increased in F15 (>60% and >80%) and F60 (>170% and >140%) compared with C. Cardiac sympatho-vagal balance was enhanced, while baroreflex function was attenuated in fructose groups. Metabolic parameters were unchanged in F15. However, F60 showed significant increases in plasma glucose (26%), cholesterol (44%), triglycerides (22%), insulin (95%), and leptin (63%), as well as glucose intolerance. LF of SAP was positively correlated with SAP. Plasma leptin was correlated with triglycerides, insulin, and glucose tolerance. Results show that increased sympathetic modulation of vessels and heart preceded metabolic dysfunction in fructose-consuming mice. Data suggest that changes in autonomic modulation may be an initiating mechanism underlying the cluster of symptoms associated with cardiometabolic disease.
Resumo:
The kinetics of sugar cane bagasse cellulose saccharification and the decomposition of glucose under extremely low acid (ELA) conditions, (0.07%), 0.14%, and 0.28% H2SO4, and at high temperatures were investigated using batch reactors. The first-order rate constants were obtained by weight loss, remaining glucose, and fitting glucose concentration profiles determined with HPLC using the Saeman model. The maximum glucose yields reached 67.6% (200 degrees C, 0.07% H2SO4, 30 min), 69.8% (210 degrees C, 0.14% H2SO4, 10 min), and 67.3% (210 degrees C, 0.28% H2SO4, 6 min). ELA conditions produced remarkable glucose yields when applied to bagasse cellulose. The first-order rate constants were used to calculate activation energies and extrathermodynamic parameters to elucidate the reaction mechanism under ELA conditions. The effect of acid concentration on cellulose hydrolysis and glucose decomposition was also investigated. The observed activation energies and reaction orders with respect to hydronium ion for cellulose hydrolysis and glucose decomposition were 184.9 and 124.5 kJ/mol and 1.27 and 0.75, respectively.
Resumo:
The Kallikrein-Kinin System (KKS) has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM), we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO). Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM.
Resumo:
Objectives. Admission hyperglycemia and B-type natriuretic peptide (BNP) are associated with mortality in acute coronary syndromes, but no study compares their prediction in-hospital death. Methods. Patients with non-ST-elevation myocardial infarction (NSTEMI), in-hospital mortality and two-year mortality or readmission were compared for area under the curve (AUC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV), and accuracy (ACC) of glycemia and BNP. Results. Respectively, AUC, SEN, SPE, PPV, NPV, and ACC for prediction of in-hospital mortality were 0.815, 71.4%, 84.3%, 26.3%, 97.4%, and 83.3% for glycemia = 200 mg/dL and 0.748, 71.4%, 68.5%, 15.2%, 96.8% and 68.7% for BNP = 300 pg/mL. AUC of glycemia was similar to BNP (P = 0.411). In multivariate analysis we found glycemia >= 200mg/dL related to in-hospital death (P = 0.004). No difference was found in two-year mortality or readmission in BNP or hyperglycemic subgroups. Conclusion. Hyperglycemia was an independent risk factor for in-hospital mortality in NSTEMI and had a good ROC curve level. Hyperglycemia and BNP, although poor in-hospital predictors of unfavorable events, were independent risk factors for death or length of stay >10 days. No relation was found between hyperglycemia or BNP and long-term events.
Resumo:
ATP-binding cassette transporter A1 mediates the export of excess cholesterol from macrophages, contributing to the prevention of atherosclerosis. Advanced glycated albumin (AGE-alb) is prevalent in diabetes mellitus and is associated with the development of atherosclerosis. Independently of changes in ABCA-1 mRNA levels, AGE-alb induces oxidative stress and reduces ABCA-1 protein levels, which leads to macrophage lipid accumulation. These metabolic conditions are known to elicit endoplasmic reticulum (ER) stress. We sought to determine if AGE-alb induces ER stress and unfolded protein response (UPR) in macrophages and how disturbances to the ER could affect ABCA-1 content and cholesterol efflux in macrophages. AGE-alb induced a time-dependent increase in ER stress and UPR markers. ABCA-1 content and cellular cholesterol efflux were reduced by 33% and 47%, respectively, in macrophages treated with AGE-alb, and both were restored by treatment with 4-phenyl butyric acid (a chemical chaperone that alleviates ER stress), but not MG132 (a proteasome inhibitor). Tunicamycin, a classical ER stress inductor, also impaired ABCA-1 expression and cholesterol efflux (showing a decrease of 61% and 82%, respectively), confirming the deleterious effect of ER stress in macrophage cholesterol accumulation. Glycoxidation induces macrophage ER stress, which relates to the reduction in ABCA-1 and in reverse cholesterol transport, endorsing the adverse effect of macrophage ER stress in atherosclerosis. Thus, chemical chaperones that alleviate ER stress may represent a useful tool for the prevention and treatment of atherosclerosis in diabetes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we discuss the detection of glucose and triglycerides using information visualization methods to process impedance spectroscopy data. The sensing units contained either lipase or glucose oxidase immobilized in layer-by-layer (LbL) films deposited onto interdigitated electrodes. The optimization consisted in identifying which part of the electrical response and combination of sensing units yielded the best distinguishing ability. It is shown that complete separation can be obtained for a range of concentrations of glucose and triglyceride when the interactive document map (IDMAP) technique is used to project the data into a two-dimensional plot. Most importantly, the optimization procedure can be extended to other types of biosensors, thus increasing the versatility of analysis provided by tailored molecular architectures exploited with various detection principles. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Dexamethasone (DEXA) is a potent immunosupressant and anti-inflammatory agent whose main side effects are muscle atrophy and insulin resistance in skeletal muscles. In this context, leucine supplementation may represent a way to limit the DEXA side effects. In this study, we have investigated the effects of a low and a high dose of leucine supplementation (via a bolus) on glucose homeostasis, muscle mass and muscle strength in energy-restricted and DEXA-treated rats. Since the leucine response may also be linked to the administration of this amino acid, we performed a second set of experiments with leucine given in bolus (via gavage) versus leucine given via drinking water. Leucine supplementation was found to produce positive effects (e. g., reduced insulin levels) only when administrated in low dosage, both via the bolus or via drinking water. However, under DEXA treatment, leucine administration was found to significantly influence this response, since leucine supplementation via drinking water clearly induced a diabetic state, whereas the same effect was not observed when supplied via the gavage.