994 resultados para Gini coefficient (G)
Resumo:
Existing data supports Portugal as the Western Europe country with highest HIV-1 subtype diversity. However, detailed phylogenetic studies of Portuguese HIV-1 epidemics are still scarce. Thus, our main goal was to analyze the phylodynamics of a local HIV-1 infection in the Portuguese region of Minho. Molecular epidemiological analysis was applied to data from 289 HIV-1 infected individuals followed in the reference Hospital of the province of Minho, Portugal, in which isolated viruses had been sequenced between 2000 and 2012. Viruses of the G (29.1%) and B (27.0%) subtypes were the most frequent, followed by recombinant forms (17.6%), C (14.5%), F1 (7.3%) and A1 (4.2%) subtypes. Multinomial logistic regression revealed that the odds of being infected with A1 and F1 subtype increased over the years when compared with B, G, C or recombinant viruses. As expected, polyphyletic patterns suggesting multiple and old introductions of subtypes B and G were found. However, transmission clusters of non-B and -G viruses among native individuals were also found with the dates of the most recent common ancestor estimated to the early 2000s. Our study supports that the HIV-1 subtype diversity in the Portuguese region of Minho is high and has been increasing in a manner that is apparently driven by factors other than immigration and international travel. Infections with A1 and F1 viruses in the region of Minho are becoming established and were mainly found in sexually transmitted clusters, reinforcing the need for more efficacious control measures targeting this infection route.
Resumo:
OBJECTIVE: Theoretical and empirical analysis of items and internal consistency of the Portuguese-language version of Social Phobia and Anxiety Inventory (SPAI-Portuguese). METHODS: Social phobia experts conducted a 45-item content analysis of the SPAI-Portuguese administered to a sample of 1,014 university students. Item discrimination was evaluated by Student's t test; interitem, mean and item-to-total correlations, by Pearson coefficient; reliability was estimated by Cronbach's alpha. RESULTS: There was 100% agreement among experts concerning the 45 items. On the SPAI-Portuguese 43 items were discriminative (p < 0.05). A few inter-item correlations between both subscales were below 0.2. The mean inter-item correlations were: 0.41 on social phobia subscale; 0.32 on agoraphobia subscale and 0.32 on the SPAI-Portuguese. Item-to-total correlations were all higher then 0.3 (p < 0.001). Cronbach's alphas were: 0.95 on the SPAI-Portuguese; 0.96 on social phobia subscale; 0.85 on agoraphobia subscale. CONCLUSION: The 45-item content analysis revealed appropriateness concerning the underlying construct of the SPAI-Portuguese (social phobia, agoraphobia) with good discriminative capacity on 43 items. The mean inter-item correlations and reliability coefficients demonstrated the SPAI-Portuguese and subscales internal consistency and multidimensionality. No item was suppressed in the SPAI-Portuguese but the authors suggest that a shortened SPAI, in its different versions, could be an even more useful tool for research settings in social phobia.
Resumo:
CONSPECTUS: Two-dimensional (2D) crystals derived from transition metal dichalcogenides (TMDs) are intriguing materials that offer a unique platform to study fundamental physical phenomena as well as to explore development of novel devices. Semiconducting group 6 TMDs such as MoS2 and WSe2 are known for their large optical absorption coefficient and their potential for high efficiency photovoltaics and photodetectors. Monolayer sheets of these compounds are flexible, stretchable, and soft semiconductors with a direct band gap in contrast to their well-known bulk crystals that are rigid and hard indirect gap semiconductors. Recent intense research has been motivated by the distinct electrical, optical, and mechanical properties of these TMD crystals in the ultimate thickness regime. As a semiconductor with a band gap in the visible to near-IR frequencies, these 2D MX2 materials (M = Mo, W; X = S, Se) exhibit distinct excitonic absorption and emission features. In this Account, we discuss how optical spectroscopy of these materials allows investigation of their electronic properties and the relaxation dynamics of excitons. We first discuss the basic electronic structure of 2D TMDs highlighting the key features of the dispersion relation. With the help of theoretical calculations, we further discuss how photoluminescence energy of direct and indirect excitons provide a guide to understanding the evolution of the electronic structure as a function of the number of layers. We also highlight the behavior of the two competing conduction valleys and their role in the optical processes. Intercalation of group 6 TMDs by alkali metals results in the structural phase transformation with corresponding semiconductor-to-metal transition. Monolayer TMDs obtained by intercalation-assisted exfoliation retains the metastable metallic phase. Mild annealing, however, destabilizes the metastable phase and gradually restores the original semiconducting phase. Interestingly, the semiconducting 2H phase, metallic 1T phase, and a charge-density-wave-like 1T' phase can coexist within a single crystalline monolayer sheet. We further discuss the electronic properties of the restacked films of chemically exfoliated MoS2. Finally, we focus on the strong optical absorption and related exciton relaxation in monolayer and bilayer MX2. Monolayer MX2 absorbs as much as 30% of incident photons in the blue region of the visible light despite being atomically thin. This giant absorption is attributed to nesting of the conduction and valence bands, which leads to diversion of optical conductivity. We describe how the relaxation pathway of excitons depends strongly on the excitation energy. Excitation at the band nesting region is of unique significance because it leads to relaxation of electrons and holes with opposite momentum and spontaneous formation of indirect excitons.
Resumo:
Tese de Doutoramento em Engenharia de Materiais.
Resumo:
Lithium-ion battery cathodes have been fabricated by screen-printing through the development of CLiFePO4 inks. It is shown that shear thinning polymer solutions in N-methyl-2-pyrrolidone (NMP) with Newtonian viscosity above 0.4 Pa s are the best binders for formulating a cathode paste with satisfactory film forming properties. The paste shows an elasticity of the order of 500 Pa and, after shear yielding, shows an apparent viscosity of the order of 3 Pa s for shear rates corresponding to those used during screen-printing. The screen-printed cathode produced with a thickness of 26 mm shows a homogeneous distribution of the active material, conductive additive and polymer binder. The total resistance and diffusion coefficient of the cathode are 450 V and 2.5 10 16cm2 s 1, respectively. The developed cathodes show an initial discharge capacity of 48.2 mAh g 1 at 5C and a discharge value of 39.8 mAh g 1 after 50 cycles. The capacity retention of 83% represents 23% of the theoretical value (charge and/or discharge process in twenty minutes), demonstrating the good performance of the battery. Thus, the developed C-LiFePO4 based inks allow to fabricate screen-printed cathodes suitable for printed lithium-ion batteries
Resumo:
OBJECTIVE: To compare the heart weight and the heart weight/body weight coefficient of adults with and without chronic malnutrition. METHODS: In an initial case series of 210 autopsies performed in adults, we recorded body and heart weights and calculated the heart weight/body weight coefficients (HW/BW x 100). The exclusion criteria were as follows: positive serology for Chagas' disease, edema, obesity, heart diseases, hepatopathies, nephropathies, and systemic arterial hypertension. Malnutrition was characterized as a body mass index <18.5kg/m². Differences with p<0.05 were considered significant. RESULTS: Individuals in the malnourished (n=15) and control (n=21) groups were statistically different, respectively, in regard to body mass index (15.9±1.7 versus 21.3±2.5kg/m²), heart weight (267.3±59.8 versus 329.1±50.4g), and the HW/BW coefficient (0.64±0.12 versus 0.57±0.09%). A positive and significant correlation was observed between heart weight and body mass index (r=0.52), and between heart weight and body weight (r=0.65). CONCLUSION: Malnourished individuals have lighter hearts and a greater HW/BW coefficient than non-malnourished individuals do. These findings indicate a possible preservation of the myocardium in relation to the intensity of weight loss associated with the probable relative increase in cardiac connective tissue and heart blood vessels.
Resumo:
1834
Resumo:
v. 1
Resumo:
v. 2
Resumo:
v. 3
Resumo:
v.1