995 resultados para Gaussian Fields
Resumo:
We present a method of image-speckle contrast for the nonprecalibration measurement of the root-mean-square roughness and the lateral-correlation length of random surfaces with Gaussian correlation. We use the simplified model of the speckle fields produced by the weak scattering object in the theoretical analysis. The explicit mathematical relation shows that the saturation value of the image-speckle contrast at a large aperture radius determines the roughness, while the variation of the contrast with the aperture radius determines the lateral-correlation length. In the experimental performance, we specially fabricate the random surface samples with Gaussian correlation. The square of the image-speckle contrast is measured versus the radius of the aperture in the 4f system, and the roughness and the lateral-correlation length are extracted by fitting the theoretical result to the experimental data. Comparison of the measurement with that by an atomic force microscope shows our method has a satisfying accuracy. (C) 2002 Optical Society of America.
Resumo:
We propose an experimentally feasible scheme to generate various types of entangled states of light fields by using beam splitters and single-photon detectors. Two beams of light fields are incident on two beam splitters respectively with each beam being asymmetrically split into two parts in which one part is supposed to be so weak that it contains at most one photon. We let the two weak output modes interfere at a third beam splitter. A conditional joint measurement on both weak output modes may result in an entanglement between the other two output modes. The conditions for the maximal entanglement are discussed based on the concurrence. Several specific examples are also examined.
Resumo:
The ordinary differential magnetic field line equations are solved numerically; the tokamak magnetic structure is studied on Hefei Tokamak-7 Upgrade (HT-7U) when the equilibrium field with a monotonic q-profile is perturbed by a helical magnetic field. We find that a single mode (m, n) helical perturbation can cause the formation of islands on rational surfaces with q = m/n and q = (m +/- 1, +/- 2, +/- 3,...)/n due to the toroidicity and plasma shape (i.e. elongation and triangularity), while there are many undestroyed magnetic surfaces called Kolmogorov-Arnold-Moser (KAM) barriers on irrational surfaces. The islands on the same rational surface do not have the same size. When the ratio between the perturbing magnetic field B-r(r) and the toroidal magnetic field amplitude B(phi)0 is large enough, the magnetic island chains on different rational surfaces will overlap and chaotic orbits appear in the overlapping area, and the magnetic field becomes stochastic. It is remarkable that the stochastic layer appears first in the plasma edge region.
Resumo:
<p>Let l be any odd prime, and ζ a primitive l-th root of unity. Let C_l be the l-Sylow subgroup of the ideal class group of Q(ζ). The Teichmüller character w : Z_l → Z^*_l is given by w(x) = x (mod l), where w(x) is a p-1-st root of unity, and x ∈ Z_l. Under the action of this character, C_l decomposes as a direct sum of C^((i))_l, where C^((i))_l is the eigenspace corresponding to w^i. Let the order of C^((3))_l be l^h_3). The main result of this thesis is the following: For every n ≥ max( 1, h_3 ), the equation x^(ln) + y^(ln) + z^(ln) = 0 has no integral solutions (x,y,z) with l ≠xyz. The same result is also proven with n ≥ max(1,h_5), under the assumption that C_l^((5)) is a cyclic group of order l^h_5. Applications of the methods used to prove the above results to the second case of Fermat's last theorem and to a Fermat-like equation in four variables are given.</p> <p>The proof uses a series of ideas of H.S. Vandiver ([Vl],[V2]) along with a theorem of M. Kurihara [Ku] and some consequences of the proof of lwasawa's main conjecture for cyclotomic fields by B. Mazur and A. Wiles [MW]. In [V1] Vandiver claimed that the first case of Fermat's Last Theorem held for l if l did not divide the class number h^+ of the maximal real subfield of Q(e^(2πi/i)). The crucial gap in Vandiver's attempted proof that has been known to experts is explained, and complete proofs of all the results used from his papers are given.</p>