689 resultados para Game-based learning model
Resumo:
Taking into account the huge repercussion and influence that J.J. Rousseau has had on modern pedagogy, the recent tercentenary of his birth is a good opportunity to think about his outstanding relevance nowadays. This paper is a theoretical and educative research developed with an analytic and comparative hermeneutical method. The main objective is to show how some concepts of his philosophy of education have a great similarity with certain changes that the present competency based teaching is demanding, so it could be considered its methodological background. In order to achieve this objective this exposure has been divided in three parts. The first part is an analysis of Rousseau's educational theory as developed in the first three books of the Emilio, in which one of the main themes is self experience-based learning, fostering self-sufficiency, curiosity and the motivation for learning. Rousseau proposed as a method the negative education, which requires, among other conditions, a constant monitoring of the learner by the tutor. In the second part, a brief summary of the most relevant changes and characteristics of competency-based teaching is developed, as well as its purpose. The student’s participation and activity are highlighted within their own learning process through the carrying out of tasks. The new educational model involves a radical change in the curriculum, in which it is highlighted the transformation of the methodology used in the classroom as well as the role of the teacher. Finally, the aim of the third part is to offer a comparative synthesis of both proposals grouping the parallelisms found in 4 topics: origin of the two models, its aims, methodology, and change in the teaching roles.
Resumo:
This paper reports on an ongoing, multiphase, project-based action learning and research project. In particular, it summarizes some aspects of the learning climate and outcomes for a case study company In the software industry, Using a participatory action research approach, the learning company framework developed by Pedler et al, (1997) is used to initiate critical reflection in the company at three levels: managing director, senior management team and technical and professional staff. As such, this is one of the first systematic attempts to apply this framework to the entire organization and to a company in the knowledge-based learning economy. Two sets of issues are of general concern to the company: internal issues surrounding the company's reward and recognition policies and practices and the provision of accounting and control information in a business relevant way to all levels of staff; and external issues concerning the extent to which the company and its members actively learn from other companies and effectively capture, disseminate and use information accessed by staff in boundary-spanning roles. The paper concludes with some illustrations of changes being introduced by the company as a result of the feedback on and discussion of these issues.
Resumo:
One of the main purposes of building a battery model is for monitoring and control during battery charging/discharging as well as for estimating key factors of batteries such as the state of charge for electric vehicles. However, the model based on the electrochemical reactions within the batteries is highly complex and difficult to compute using conventional approaches. Radial basis function (RBF) neural networks have been widely used to model complex systems for estimation and control purpose, while the optimization of both the linear and non-linear parameters in the RBF model remains a key issue. A recently proposed meta-heuristic algorithm named Teaching-Learning-Based Optimization (TLBO) is free of presetting algorithm parameters and performs well in non-linear optimization. In this paper, a novel self-learning TLBO based RBF model is proposed for modelling electric vehicle batteries using RBF neural networks. The modelling approach has been applied to two battery testing data sets and compared with some other RBF based battery models, the training and validation results confirm the efficacy of the proposed method.
Resumo:
This paper proposes an efficient learning mechanism to build fuzzy rule-based systems through the construction of sparse least-squares support vector machines (LS-SVMs). In addition to the significantly reduced computational complexity in model training, the resultant LS-SVM-based fuzzy system is sparser while offers satisfactory generalization capability over unseen data. It is well known that the LS-SVMs have their computational advantage over conventional SVMs in the model training process; however, the model sparseness is lost, which is the main drawback of LS-SVMs. This is an open problem for the LS-SVMs. To tackle the nonsparseness issue, a new regression alternative to the Lagrangian solution for the LS-SVM is first presented. A novel efficient learning mechanism is then proposed in this paper to extract a sparse set of support vectors for generating fuzzy IF-THEN rules. This novel mechanism works in a stepwise subset selection manner, including a forward expansion phase and a backward exclusion phase in each selection step. The implementation of the algorithm is computationally very efficient due to the introduction of a few key techniques to avoid the matrix inverse operations to accelerate the training process. The computational efficiency is also confirmed by detailed computational complexity analysis. As a result, the proposed approach is not only able to achieve the sparseness of the resultant LS-SVM-based fuzzy systems but significantly reduces the amount of computational effort in model training as well. Three experimental examples are presented to demonstrate the effectiveness and efficiency of the proposed learning mechanism and the sparseness of the obtained LS-SVM-based fuzzy systems, in comparison with other SVM-based learning techniques.
Resumo:
Tese de doutoramento, Informática (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
The increasing use of information and communication technologies (ICT) in diverse professional and personal contexts calls for new knowledge, and a set of abilities, competences and attitudes, for an active and participative citizenship. In this context it is acknowledged that universities have an important role innovating in the educational use of digital media to promote an inclusive digital literacy. The educational potential of digital technologies and resources has been recognized by both researchers and practitioners. Multiple pedagogical models and research approaches have already contributed to put in evidence the importance of adapting instructional and learning practices and processes to concrete contexts and educational goals. Still, academic and scientific communities believe further investments in ICT research is needed in higher education. This study focuses on educational models that may contribute to support digital technology uses, where these can have cognitive and educational relevance when compared to analogical technologies. A teaching and learning model, centered in the active role of the students in the exploration, production, presentation and discussion of interactive multimedia materials, was developed and applied using the internet and exploring emergent semantic hypermedia formats. The research approach focused on the definition of design principles for developing class activities that were applied in three different iterations in undergraduate courses from two institutions, namely the University of Texas at Austin, USA and the University of Lisbon, Portugal. The analysis of this study made possible to evaluate the potential and efficacy of the model proposed and the authoring tool chosen in the support of metacognitive skills and attitudes related to information structuring and management, storytelling and communication, using computers and the internet.
Resumo:
We describe a technique for finding pixelwise correspondences between two images by using models of objects of the same class to guide the search. The object models are 'learned' from example images (also called prototypes) of an object class. The models consist of a linear combination ofsprototypes. The flow fields giving pixelwise correspondences between a base prototype and each of the other prototypes must be given. A novel image of an object of the same class is matched to a model by minimizing an error between the novel image and the current guess for the closest modelsimage. Currently, the algorithm applies to line drawings of objects. An extension to real grey level images is discussed.
Resumo:
[EU]Lan honetan semantika distribuzionalaren eta ikasketa automatikoaren erabilera aztertzen dugu itzulpen automatiko estatistikoa hobetzeko. Bide horretan, erregresio logistikoan oinarritutako ikasketa automatikoko eredu bat proposatzen dugu hitz-segiden itzulpen- probabilitatea modu dinamikoan modelatzeko. Proposatutako eredua itzulpen automatiko estatistikoko ohiko itzulpen-probabilitateen orokortze bat dela frogatzen dugu, eta testuinguruko nahiz semantika distribuzionaleko informazioa barneratzeko baliatu ezaugarri lexiko, hitz-cluster eta hitzen errepresentazio bektorialen bidez. Horretaz gain, semantika distribuzionaleko ezagutza itzulpen automatiko estatistikoan txertatzeko beste hurbilpen bat lantzen dugu: hitzen errepresentazio bektorial elebidunak erabiltzea hitz-segiden itzulpenen antzekotasuna modelatzeko. Gure esperimentuek proposatutako ereduen baliagarritasuna erakusten dute, emaitza itxaropentsuak eskuratuz oinarrizko sistema sendo baten gainean. Era berean, gure lanak ekarpen garrantzitsuak egiten ditu errepresentazio bektorialen mapaketa elebidunei eta hitzen errepresentazio bektorialetan oinarritutako hitz-segiden antzekotasun neurriei dagokienean, itzulpen automatikoaz haratago balio propio bat dutenak semantika distribuzionalaren arloan.
Resumo:
The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a novel intelligent multiple-controller framework incorporating a fuzzy-logic-based switching and tuning supervisor along with a generalised learning model (GLM) for an autonomous cruise control application. The proposed methodology combines the benefits of a conventional proportional-integral-derivative (PID) controller, and a PID structure-based (simultaneous) zero and pole placement controller. The switching decision between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using a fuzzy-logic-based supervisor, operating at the highest level of the system. The supervisor is also employed to adaptively tune the parameters of the multiple controllers in order to achieve the desired closed-loop system performance. The intelligent multiple-controller framework is applied to the autonomous cruise control problem in order to maintain a desired vehicle speed by controlling the throttle plate angle in an electronic throttle control (ETC) system. Sample simulation results using a validated nonlinear vehicle model are used to demonstrate the effectiveness of the multiple-controller with respect to adaptively tracking the desired vehicle speed changes and achieving the desired speed of response, whilst penalising excessive control action. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
This paper discusses the development of the Virtual Construction Simulator (VCS) 3 - a simulation game-based educational tool for teaching construction schedule planning and management. The VCS3 simulation game engages students in learning the concepts of planning and managing construction schedules through goal driven exploration, employed strategies, and immediate feedback. Through the planning and simulation mode, students learn the difference between the as-planned and as-built schedules resulting from varying factors such as resource availability, weather and labor productivity. This paper focuses on the development of the VCS3 and its construction physics model. Challenges inherent in the process of identifying variables and their relationships to reliably represent and simulate the dynamic nature of planning and managing of construction projects are also addressed.
Resumo:
Bin planning (arrangements) is a key factor in the timber industry. Improper planning of the storage bins may lead to inefficient transportation of resources, which threaten the overall efficiency and thereby limit the profit margins of sawmills. To address this challenge, a simulation model has been developed. However, as numerous alternatives are available for arranging bins, simulating all possibilities will take an enormous amount of time and it is computationally infeasible. A discrete-event simulation model incorporating meta-heuristic algorithms has therefore been investigated in this study. Preliminary investigations indicate that the results achieved by GA based simulation model are promising and better than the other meta-heuristic algorithm. Further, a sensitivity analysis has been done on the GA based optimal arrangement which contributes to gaining insights and knowledge about the real system that ultimately leads to improved and enhanced efficiency in sawmill yards. It is expected that the results achieved in the work will support timber industries in making optimal decisions with respect to arrangement of storage bins in a sawmill yard.
Resumo:
Nowadays, the popularity of the Web encourages the development of Hypermedia Systems dedicated to e-learning. Nevertheless, most of the available Web teaching systems apply the traditional paper-based learning resources presented as HTML pages making no use of the new capabilities provided by the Web. There is a challenge to develop educative systems that adapt the educative content to the style of learning, context and background of each student. Another research issue is the capacity to interoperate on the Web reusing learning objects. This work presents an approach to address these two issues by using the technologies of the Semantic Web. The approach presented here models the knowledge of the educative content and the learner’s profile with ontologies whose vocabularies are a refinement of those defined on standards situated on the Web as reference points to provide semantics. Ontologies enable the representation of metadata concerning simple learning objects and the rules that define the way that they can feasibly be assembled to configure more complex ones. These complex learning objects could be created dynamically according to the learners’ profile by intelligent agents that use the ontologies as the source of their beliefs. Interoperability issues were addressed by using an application profile of the IEEE LOM- Learning Object Metadata standard.
Resumo:
Pós-graduação em Educação para a Ciência - FC