944 resultados para Gait cicle
Resumo:
We propose a novel skeleton-based approach to gait recognition using our Skeleton Variance Image. The core of our approach consists of employing the screened Poisson equation to construct a family of smooth distance functions associated with a given shape. The screened Poisson distance function approximation nicely absorbs and is relatively stable to shape boundary perturbations which allows us to define a rough shape skeleton. We demonstrate how our Skeleton Variance Image is a powerful gait cycle descriptor leading to a significant improvement over the existing state of the art gait recognition rate.
Resumo:
This work explores regulation of forward speed, step length, and slope walking for the passive-dynamic class of bipedal robots. Previously, an energy-shaping control for regulating forward speed has appeared in the literature; here we show that control to be a special case of a more general time-scaling control that allows for speed transitions in arbitrary time. As prior work has focused on potential energy shaping for fully actuated bipeds, we study in detail the shaping of kinetic energy for bipedal robots, giving special treatment to issues of underactuation. Drawing inspiration from features of human walking, an underactuated kinetic-shaping control is presented that provides efficient regulation of walking speed while adjusting step length. Previous results on energetic symmetries of bipedal walking are also extended, resulting in a control that allows regulation of speed and step length while walking on any slope. Finally we formalize the optimal gait regulation problem and propose a dynamic programming solution seeded with passive-dynamic limit cycles. Observations of the optimal solutions generated by this method reveal further similarities between passive dynamic walking and human locomotion and give insight into the structure of minimum-effort controls for walking.
Resumo:
Evolutionary robitics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robit is predefined an various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requiements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance paramets such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictoins for modern humans are highly accurate in terms of energy cost for a given speend and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human=like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids
Resumo:
Cranial cruciate ligament (CCL) deficiency is the leading cause of lameness affecting the stifle joints of large breed dogs, especially Labrador Retrievers. Although CCL disease has been studied extensively, its exact pathogenesis and the primary cause leading to CCL rupture remain controversial. However, weakening secondary to repetitive microtrauma is currently believed to cause the majority of CCL instabilities diagnosed in dogs. Techniques of gait analysis have become the most productive tools to investigate normal and pathological gait in human and veterinary subjects. The inverse dynamics analysis approach models the limb as a series of connected linkages and integrates morphometric data to yield information about the net joint moment, patterns of muscle power and joint reaction forces. The results of these studies have greatly advanced our understanding of the pathogenesis of joint diseases in humans. A muscular imbalance between the hamstring and quadriceps muscles has been suggested as a cause for anterior cruciate ligament rupture in female athletes. Based on these findings, neuromuscular training programs leading to a relative risk reduction of up to 80% has been designed. In spite of the cost and morbidity associated with CCL disease and its management, very few studies have focused on the inverse dynamics gait analysis of this condition in dogs. The general goals of this research were (1) to further define gait mechanism in Labrador Retrievers with and without CCL-deficiency, (2) to identify individual dogs that are susceptible to CCL disease, and (3) to characterize their gait. The mass, location of the center of mass (COM), and mass moment of inertia of hind limb segments were calculated using a noninvasive method based on computerized tomography of normal and CCL-deficient Labrador Retrievers. Regression models were developed to determine predictive equations to estimate body segment parameters on the basis of simple morphometric measurements, providing a basis for nonterminal studies of inverse dynamics of the hind limbs in Labrador Retrievers. Kinematic, ground reaction forces (GRF) and morphometric data were combined in an inverse dynamics approach to compute hock, stifle and hip net moments, powers and joint reaction forces (JRF) while trotting in normal, CCL-deficient or sound contralateral limbs. Reductions in joint moment, power, and loads observed in CCL-deficient limbs were interpreted as modifications adopted to reduce or avoid painful mobilization of the injured stifle joint. Lameness resulting from CCL disease affected predominantly reaction forces during the braking phase and the extension during push-off. Kinetics also identified a greater joint moment and power of the contralateral limbs compared with normal, particularly of the stifle extensor muscles group, which may correlate with the lameness observed, but also with the predisposition of contralateral limbs to CCL deficiency in dogs. For the first time, surface EMG patterns of major hind limb muscles during trotting gait of healthy Labrador Retrievers were characterized and compared with kinetic and kinematic data of the stifle joint. The use of surface EMG highlighted the co-contraction patterns of the muscles around the stifle joint, which were documented during transition periods between flexion and extension of the joint, but also during the flexion observed in the weight bearing phase. Identification of possible differences in EMG activation characteristics between healthy patients and dogs with or predisposed to orthopedic and neurological disease may help understanding the neuromuscular abnormality and gait mechanics of such disorders in the future. Conformation parameters, obtained from femoral and tibial radiographs, hind limb CT images, and dual-energy X-ray absorptiometry, of hind limbs predisposed to CCL deficiency were compared with the conformation parameters from hind limbs at low risk. A combination of tibial plateau angle and femoral anteversion angle measured on radiographs was determined optimal for discriminating predisposed and non-predisposed limbs for CCL disease in Labrador Retrievers using a receiver operating characteristic curve analysis method. In the future, the tibial plateau angle (TPA) and femoral anteversion angle (FAA) may be used to screen dogs suspected of being susceptible to CCL disease. Last, kinematics and kinetics across the hock, stifle and hip joints in Labrador Retrievers presumed to be at low risk based on their radiographic TPA and FAA were compared to gait data from dogs presumed to be predisposed to CCL disease for overground and treadmill trotting gait. For overground trials, extensor moment at the hock and energy generated around the hock and stifle joints were increased in predisposed limbs compared to non predisposed limbs. For treadmill trials, dogs qualified as predisposed to CCL disease held their stifle at a greater degree of flexion, extended their hock less, and generated more energy around the stifle joints while trotting on a treadmill compared with dogs at low risk. This characterization of the gait mechanics of Labrador Retrievers at low risk or predisposed to CCL disease may help developing and monitoring preventive exercise programs to decrease gastrocnemius dominance and strengthened the hamstring muscle group.
Resumo:
Esta tesis se centra en la identificación de personas a través de la forma de caminar. El problema del reconocimiento del paso ha sido tratado mediante diferentes enfoques, en los dominios 2D y 3D, y usando una o varias vistas. Sin embargo, la dependencia con respecto al punto de vista, y por tanto de la trayectoria del sujeto al caminar sigue siendo aún un problema abierto. Se propone hacer frente al problema de la dependencia con respecto a la trayectoria por medio de reconstrucciones 3D de sujetos caminando. El uso de reconstrucciones varias ventajas que cabe destacar. En primer lugar, permite explotar una mayor cantidad de información en contraste con los métodos que extraen los descriptores de la marcha a partir de imágenes, en el dominio 2D. En segundo lugar, las reconstrucciones 3D pueden ser alineadas a lo largo de la marcha como si el sujeto hubiera caminado en una cinta andadora, proporcionando así una forma de analizar el paso independientemente de la trayectoria seguida. Este trabajo propone tres enfoques para resolver el problema de la dependencia a la vista: 1. Mediante la utilización de reconstrucciones volumétricas alineadas. 2. Mediante el uso de reconstrucciones volumétricas no alineadas. 3. Sin usar reconstrucciones. Se proponen además tres tipos de descriptores. El primero se centra en describir el paso mediante análisis morfológico de los volúmenes 3D alineados. El segundo hace uso del concepto de entropa de la información para describir la dinámica del paso humano. El tercero persigue capturar la dinámica de una forma invariante a rotación, lo cual lo hace especialmente interesante para ser aplicado tanto en trayectorias curvas como rectas, incluyendo cambios de dirección. Estos enfoques han sido probados sobre dos bases de datos públicas. Ambas están especialmente diseñadas para tratar el problema de la dependencia con respecto al punto de vista, y por tanto de la dependencia con respecto a la trayectoria. Los resultados experimentales muestran que para el enfoque basado en reconstrucciones volumétricas alineadas, el descriptor del paso basado en entropa consigue los mejores resultados, en comparación con métodos estrechamente relacionados del Estado del Arte actual. No obstante, el descriptor invariante a rotación consigue una tasa de reconocimiento que supera a los métodos actuales sin requerir la etapa previa de alineamiento de las reconstrucciones 3D.
Resumo:
Combining information on kinetics and kinematics of the trunk during gait is important for both clinical and research purposes, since it can help in better understanding the mechanisms behind changes in movement patterns in chronic low back pain patients. Although three-dimensional gait analysis has been used to evaluate chronic low back pain and healthy individuals, the reliability and measurement error of this procedure have not been fully established. The main purpose of this thesis is to gain a better understanding about the differences in the biomechanics of the trunk and lower limbs during gait, in patients and healthy individuals. To achieve these aims, three studies were developed. The first two, adopted a prospective design and focused on the reliability and measurement error of gait analysis. In these test-retest studies, chronic low back pain and healthy individuals were submitted to a gait assessment protocol, with two distinct evaluation moments, separated by one week. Gait data was collected using a 13-camera opto-electronic system and three force platforms. Data analysis included the computation of time-distance parameters, as well as the peak values for lower limb and trunk joint angles/moments. The third study followed a cross sectional design, where gait in chronic low back pain individuals was compared with matched controls. Step-to-step variability of the thoracic, lumbar and hips was calculated, and step-to-step deviations of these segments from their average pattern (residual rotations) were correlated to each other. The reliability studies in this thesis show that three-dimensional gait analysis is a reliable and consistent procedure for both chronic low back pain and healthy individuals. The results suggest varied reliability indices for multi-segment trunk joint angles, joint moments and time-distance parameters during gait, together with an acceptable level of error (particularly regarding sagittal plane). Our findings also show altered stride-to-stride variability of lumbar and thoracic segments and lower trunk joint moments in patients. These kinematic and kinetic results lend support to the notion that chronic low back pain individuals exhibit a protective movement strategy.
Resumo:
Biomechanical adaptations that occur during pregnancy can lead to changes on gait pattern. Nevertheless, these adaptations of gait are still not fully understood. The purpose was to determine the effect of pregnancy on the biomechanical pattern of walking, regarding the kinetic parameters. A three-dimensional analysis was performed in eleven participants. The kinetic parameters in the joints of the lower limb during gait were compared at the end of the first, second, and third trimesters of pregnancy and in the postpartum period, in healthy pregnant women. The main results showed a reduction in the normalized vertical reaction forces, throughout pregnancy, particularly the third peak. Pregnant women showed, during most of the stance phase, medial reaction forces as a motor response to promote the body stability. Bilateral changes were observed in hip joint, with a decrease in the participation of the hip extensors and in the eccentric contraction of hip flexors. In ankle joint a decrease in the participation of ankle plantar flexors was found. In conclusion, the overall results point to biomechanical adjustments that showed a decrease of the mechanical load of women throughout pregnancy, with exception for few unilateral changes of hip joint moments.
Resumo:
During pregnancy women experience several changes in the body's physiology, morphology, and hormonal system. These changes may affect the balance and body stability and can cause discomfort and pain. The adaptations of the musculoskeletal system due to morphological changes during pregnancy are not fully understood. Few studies clarify the biomechanical changes of gait that occur during pregnancy and in postpartum period.
Resumo:
Biomechanical adaptations that occur during pregnancy can lead to changes on gait pattern. Nevertheless, these adaptations of gait are still not fully understood. The purpose was to determine the effect of pregnancy on the biomechanical pattern of walking, regarding the kinetic parameters. A three-dimensional analysis was performed in eleven participants. The kinetic parameters in the joints of the lower limb during gait were compared at the end of the first, second, and third trimesters of pregnancy and in the postpartum period, in healthy pregnant women. The main results showed a reduction in the normalized vertical reaction forces, throughout pregnancy, particularly the third peak. Pregnant women showed, during most of the stance phase, medial reaction forces as a motor response to promote the body stability. Bilateral changes were observed in hip joint, with a decrease in the participation of the hip extensors and in the eccentric contraction of hip flexors. In ankle joint a decrease in the participation of ankle plantar flexors was found. In conclusion, the overall results point to biomechanical adjustments that showed a decrease of the mechanical load of women throughout pregnancy, with exception for few unilateral changes of hip joint moments.
Resumo:
During pregnancy women experience several changes in the body's physiology, morphology, and hormonal system. These changes may affect the balance and body stability and can cause discomfort and pain. The adaptations of the musculoskeletal system due to morphological changes during pregnancy are not fully understood. Few studies clarify the biomechanical changes of gait that occur during pregnancy and in postpartum period.
Resumo:
Gait analysis allows to characterize motor function, highlighting deviations from normal motor behavior related to an underlying pathology. The widespread use of wearable inertial sensors has opened the way to the evaluation of ecological gait, and a variety of methodological approaches and algorithms have been proposed for the characterization of gait from inertial measures (e.g. for temporal parameters, motor stability and variability, specific pathological alterations). However, no comparative analysis of their performance (i.e. accuracy, repeatability) was available yet, in particular, analysing how this performance is affected by extrinsic (i.e. sensor location, computational approach, analysed variable, testing environmental constraints) and intrinsic (i.e. functional alterations resulting from pathology) factors. The aim of the present project was to comparatively analyze the influence of intrinsic and extrinsic factors on the performance of the numerous algorithms proposed in the literature for the quantification of specific characteristics (i.e. timing, variability/stability) and alterations (i.e. freezing) of gait. Considering extrinsic factors, the influence of sensor location, analyzed variable, and computational approach on the performance of a selection of gait segmentation algorithms from a literature review was analysed in different environmental conditions (e.g. solid ground, sand, in water). Moreover, the influence of altered environmental conditions (i.e. in water) was analyzed as referred to the minimum number of stride necessary to obtain reliable estimates of gait variability and stability metrics, integrating what already available in the literature for over ground gait in healthy subjects. Considering intrinsic factors, the influence of specific pathological conditions (i.e. Parkinson’s Disease) was analyzed as affecting the performance of segmentation algorithms, with and without freezing. Finally, the analysis of the performance of algorithms for the detection of gait freezing showed how results depend on the domain of implementation and IMU position.