937 resultados para GRAVITATIONAL-WAVE DETECTOR
Resumo:
Euroopan hiukkastutkimuslaitoksen CERNin rakenteilla olevan LHC-hiukkaskiihdyttimen CMS-koeasema on tarkoitettu erityisesti myonin ilmaisuun. Tässä työssä on esitelty CMS-koeaseman RPC-ilmaisintyypin linkkijärjestelmä ja sen testaamiseen tarkoitetut laitteet sekä laitteiden testaamiseen tarvittavat ohjelmistot. Työssä on selvitetty ohjelmien toimivuus ja keskinäinen yhteensopivuus.
Resumo:
An accidental burst of a pressure vessel is an uncontrollable and explosion-like batch process. In this study it is called an explosion. The destructive effectof a pressure vessel explosion is relative to the amount of energy released in it. However, in the field of pressure vessel safety, a mutual understanding concerning the definition of explosion energy has not yet been achieved. In this study the definition of isentropic exergy is presented. Isentropic exergy is the greatest possible destructive energy which can be obtained from a pressure vessel explosion when its state changes in an isentropic way from the initial to the final state. Finally, after the change process, the gas has similar pressure and flow velocity as the environment. Isentropic exergy differs from common exergy inthat the process is assumed to be isentropic and the final gas temperature usually differs from the ambient temperature. The explosion process is so fast that there is no time for the significant heat exchange needed for the common exergy.Therefore an explosion is better characterized by isentropic exergy. Isentropicexergy is a characteristic of a pressure vessel and it is simple to calculate. Isentropic exergy can be defined also for any thermodynamic system, such as the shock wave system developing around an exploding pressure vessel. At the beginning of the explosion process the shock wave system has the same isentropic exergyas the pressure vessel. When the system expands to the environment, its isentropic exergy decreases because of the increase of entropy in the shock wave. The shock wave system contains the pressure vessel gas and a growing amount of ambient gas. The destructive effect of the shock wave on the ambient structures decreases when its distance from the starting point increases. This arises firstly from the fact that the shock wave system is distributed to a larger space. Secondly, the increase of entropy in the shock waves reduces the amount of isentropic exergy. Equations concerning the change of isentropic exergy in shock waves are derived. By means of isentropic exergy and the known flow theories, equations illustrating the pressure of the shock wave as a function of distance are derived. Amethod is proposed as an application of the equations. The method is applicablefor all shapes of pressure vessels in general use, such as spheres, cylinders and tubes. The results of this method are compared to measurements made by various researchers and to accident reports on pressure vessel explosions. The test measurements are found to be analogous with the proposed method and the findings in the accident reports are not controversial to it.
Resumo:
In this paper, the sensor of an optical mouse is presented as a counterfeit coin detector applied to the two-Euro case. The detection process is based on the short distance image acquisition capabilities of the optical mouse sensor where partial images of the coin under analysis are compared with some partial reference coin images for matching. Results show that, using only the vision sense, the counterfeit acceptance and rejection rates are very similar to those of a trained user and better than those of an untrained user.
Resumo:
INTRODUCTION: We examined the power spectral changes of the compound muscle action potential (M wave) evoked during isometric contractions of increasing strength. METHODS: Surface electromyography (sEMG) of the vastus lateralis and medialis was recorded from 20 volunteers who performed 4-s step-wise isometric contractions of different intensities. A maximal M wave was elicited by a single stimulus to the femoral nerve and superimposed on the voluntary contractions. The spectral characteristics (Fmean and Fmedian) of sEMG and M-wave signals were calculated. RESULTS: M-wave spectral indicators increased systematically with contraction intensity up to 60% MVC and then leveled off at higher forces. Over the 10-60% MVC range, the increase in spectral indicators was 3 times higher for M waves (36%) than for sEMG (12%). CONCLUSIONS: The consistent increase in M-wave spectral characteristics with force is due to the fact that the number of motor units recruited by the superimposed supramaximal stimulus is approximately stable.
Resumo:
Hydrogenated amorphous silicon (a‐Si:H) thin films have been obtained from pure SiH4 rf discharges by using the square wave modulation (SQWM) method. Film properties have been studied by means of spectroellipsometry, thermal desorption spectrometry, photothermal deflection spectroscopy and electrical conductivity measurements, as a function of the modulation frequency of the rf power amplitude (0.2-4000 Hz). The films deposited at frequencies about 1 kHz show the best structural and optoelectronic characteristics. Based upon the experimental results, a qualitative model is presented, which points up the importance of plasma negative ions in the deposition of a‐Si:H from SQWM rf discharges through their influence on powder particle formation.
Resumo:
BACKGROUND: Studies in bipolar disorder (BD) to date are limited in their ability to provide a whole-disease perspective--their scope has generally been confined to a single disease phase and/or a specific treatment. Moreover, most clinical trials have focused on the manic phase of disease, and not on depression, which is associated with the greatest disease burden. There are few longitudinal studies covering both types of patients with BD (I and II) and the whole course of the disease, regardless of patients' symptomatology. Therefore, the Wide AmbispectiVE study of the clinical management and burden of Bipolar Disorder (WAVE-bd) (NCT01062607) aims to provide reliable information on the management of patients with BD in daily clinical practice. It also seeks to determine factors influencing clinical outcomes and resource use in relation to the management of BD. METHODS: WAVE-bd is a multinational, multicentre, non-interventional, longitudinal study. Approximately 3000 patients diagnosed with BD type I or II with at least one mood event in the preceding 12 months were recruited at centres in Austria, Belgium, Brazil, France, Germany, Portugal, Romania, Turkey, Ukraine and Venezuela. Site selection methodology aimed to provide a balanced cross-section of patients cared for by different types of providers of medical aid (e.g. academic hospitals, private practices) in each country. Target recruitment percentages were derived either from scientific publications or from expert panels in each participating country. The minimum follow-up period will be 12 months, with a maximum of 27 months, taking into account the retrospective and the prospective parts of the study. Data on demographics, diagnosis, medical history, clinical management, clinical and functional outcomes (CGI-BP and FAST scales), adherence to treatment (DAI-10 scale and Medication Possession Ratio), quality of life (EQ-5D scale), healthcare resources, and caregiver burden (BAS scale) will be collected. Descriptive analysis with common statistics will be performed. DISCUSSION: This study will provide detailed descriptions of the management of BD in different countries, particularly in terms of clinical outcomes and resources used. Thus, it should provide psychiatrists with reliable and up-to-date information about those factors associated with different management patterns of BD. TRIAL REGISTRATION NO: ClinicalTrials.gov: NCT01062607.
Resumo:
In order to improve the efficacy and safety of treatments, drug dosage needs to be adjusted to the actual needs of each patient in a truly personalized medicine approach. Key for widespread dosage adjustment is the availability of point-of-care devices able to measure plasma drug concentration in a simple, automated, and cost-effective fashion. In the present work, we introduce and test a portable, palm-sized transmission-localized surface plasmon resonance (T-LSPR) setup, comprised of off-the-shelf components and coupled with DNA-based aptamers specific to the antibiotic tobramycin (467 Da). The core of the T-LSPR setup are aptamer-functionalized gold nanoislands (NIs) deposited on a glass slide covered with fluorine-doped tin oxide (FTO), which acts as a biosensor. The gold NIs exhibit localized plasmon resonance in the visible range matching the sensitivity of the complementary metal oxide semiconductor (CMOS) image sensor employed as a light detector. The combination of gold NIs on the FTO substrate, causing NIs size and pattern irregularity, might reduce the overall sensitivity but confers extremely high stability in high-ionic solutions, allowing it to withstand numerous regeneration cycles without sensing losses. With this rather simple T-LSPR setup, we show real-time label-free detection of tobramycin in buffer, measuring concentrations down to 0.5 μM. We determined an affinity constant of the aptamer-tobramycin pair consistent with the value obtained using a commercial propagating-wave based SPR. Moreover, our label-free system can detect tobramycin in filtered undiluted blood serum, measuring concentrations down to 10 μM with a theoretical detection limit of 3.4 μM. While the association signal of tobramycin onto the aptamer is masked by the serum injection, the quantification of the captured tobramycin is possible during the dissociation phase and leads to a linear calibration curve for the concentrations over the tested range (10-80 μM). The plasmon shift following surface binding is calculated in terms of both plasmon peak location and hue, with the latter allowing faster data elaboration and real-time display of the results. The presented T-LSPR system shows for the first time label-free direct detection and quantification of a small molecule in the complex matrix of filtered undiluted blood serum. Its uncomplicated construction and compact size, together with the remarkable performances, represent a leap forward toward effective point-of-care devices for therapeutic drug concentration monitoring.
Resumo:
[spa] En este trabajo se analiza la relación entre la heterogeneidad étnica y la redistribución, utilizando la reciente y masiva llegada de inmigrantes a España. En concreto, se estudia el efecto de los cambios en la densidad de inmigrantes, observada entre 1998 y 2006, sobre los cambios en el gasto social municipal. La densidad de inmigrantes se instrumenta utilizando los patrones de establecimiento por país de origen para asignar los flujos predichos de inmigrantes a cada municipio. Los resultados evidencian que el gasto social incrementó menos en los municipios con mayores incrementos en la densidad de inmigrantes. También se proporciona evidencia de la existencia de una relación positiva entre la densidad de inmigrantes y el porcentaje de voto obtenidos por los partidos de derecha. Por tanto, estos resultados son consistentes con las teorías que predicen una relación negativa entre la heterogeneidad étnica y la redistribución.
Resumo:
[spa] En este trabajo se analiza la relación entre la heterogeneidad étnica y la redistribución, utilizando la reciente y masiva llegada de inmigrantes a España. En concreto, se estudia el efecto de los cambios en la densidad de inmigrantes, observada entre 1998 y 2006, sobre los cambios en el gasto social municipal. La densidad de inmigrantes se instrumenta utilizando los patrones de establecimiento por país de origen para asignar los flujos predichos de inmigrantes a cada municipio. Los resultados evidencian que el gasto social incrementó menos en los municipios con mayores incrementos en la densidad de inmigrantes. También se proporciona evidencia de la existencia de una relación positiva entre la densidad de inmigrantes y el porcentaje de voto obtenidos por los partidos de derecha. Por tanto, estos resultados son consistentes con las teorías que predicen una relación negativa entre la heterogeneidad étnica y la redistribución.
Resumo:
n this work we analyze the behavior of complex information in Fresnel domain taking into account the limited capability to display complex transmittance values of current liquid crystal devices, when used as holographic displays. In order to do this analysis we compute the reconstruction of Fresnel holograms at several distances using the different parts of the complex distribution (real and imaginary parts, amplitude and phase) as well as using the full complex information adjusted with a method that combines two configurations of the devices in an adding architecture. The RMS error between the amplitude of these reconstructions and the original amplitude is used to evaluate the quality of the information displayed. The results of the error analysis show different behavior for the reconstructions using the different parts of the complex distribution and using the combined method of two devices. Better reconstructions are obtained when using two devices whose configurations densely cover the complex plane when they are added. Simulated and experimental results are also presented.
Resumo:
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.
Resumo:
In this paper we explore the use of non-linear transformations in order to improve the performance of an entropy based voice activity detector (VAD). The idea of using a non-linear transformation comes from some previous work done in speech linear prediction (LPC) field based in source separation techniques, where the score function was added into the classical equations in order to take into account the real distribution of the signal. We explore the possibility of estimating the entropy of frames after calculating its score function, instead of using original frames. We observe that if signal is clean, estimated entropy is essentially the same; but if signal is noisy transformed frames (with score function) are able to give different entropy if the frame is voiced against unvoiced ones. Experimental results show that this fact permits to detect voice activity under high noise, where simple entropy method fails.
Resumo:
OBJECTIVES: To determine inter-session and intra/inter-individual variations of the attenuations of aortic blood/myocardium with MDCT in the context of calcium scoring. To evaluate whether these variations are dependent on patients' characteristics. METHODS: Fifty-four volunteers were evaluated with calcium scoring non-enhanced CT. We measured attenuations (inter-individual variation) and standard deviations (SD, intra-individual variation) of the blood in the ascending aorta and of the myocardium of left ventricle. Every volunteer was examined twice to study the inter-session variation. The fat pad thickness at the sternum and noise (SD of air) were measured too. These values were correlated with the measured aortic/ventricular attenuations and their SDs (Pearson). Historically fixed thresholds (90 and 130 HU) were tested against different models based on attenuations of blood/ventricle. RESULTS: The mean attenuation was 46 HU (range, 17-84 HU) with mean SD 23 HU for the blood, and 39 HU (10-82 HU) with mean SD 18 HU for the myocardium. The attenuation/SD of the blood were significantly higher than those of the myocardium (p < 0.01). The inter-session variation was not significant. There was a poor correlation between SD of aortic blood/ventricle with fat thickness/noise. Based on existing models, 90 HU threshold offers a confidence interval of approximately 95% and 130 HU more than 99%. CONCLUSIONS: Historical thresholds offer high confidence intervals for exclusion of aortic blood/myocardium and by the way for detecting calcifications. Nevertheless, considering the large variations of blood/myocardium CT values and the influence of patient's characteristics, a better approach might be an adaptive threshold.