974 resultados para GEL-PHASE MATERIALS
Resumo:
We report a reversible phase transformation of platelet-shaped ZnS nanostructures between wurtzite (WZ) and zinc blende (ZB) phases by reversible insertion/ ejection of dopant Mn(II) ions induced by a thermocyclic process. In a reaction flask loaded with WZ ZnS platelets and Mn molecular precursors, during heating Mn ions are incorporated and change the phase of the host nanostructures to ZB; during cooling Mn ions are spontaneously ejected, returning the host nanoplatelets to the original WZ phase. These reversible changes are monitored for several cycles with PL, EPR, XRD, and HRTEM. Interestingly, the (0001) WZ platelets transform to (110) ZB following a nucleation and growth process triggered by a local increase/depletion of the Mn2+ concentration in the nanocrystals.
Resumo:
Nanoporous structures are widely used for many applications and hence it Is important to investigate their thermal stability. We study the stability of spherical nanoporous aggregates using phase-field simulations that explore systematically the effect of grain boundary diffusion, surface diffusion, and grain boundary mobility on the pathways for microstructural evolution. Our simulations for different combinations of surface and GB diffusivity and GB mobility show four distinct microstructural pathways en route to 100% density: multiple dosed pores, hollow shells, hollow shells with a core, and multiple interconnected pores. The microstructures from our simulations are consistent with experimental observations in several different systems. Our results have important implications for rational synthesis of hollow nanostructures or aggregates with open pores, and for controlling the stability of nanoporous aggregates that are widely used for many applications.
Resumo:
We report the results of Monte Carlo simulation of the phase diagram and oxygen ordering in YBa2Cu3O6+x for low intra-sublattice repulsion. At low temperatures, apart from tetragonal (T), orthorhombic (OI) and 'double cell' ortho II phases, there is evidence for two additional orthorhombic phases labelled here as OIBAR and OIII. At high temperatures, there was no evidence for the decomposition of the OI phase into the T and OI phases. We find qualitative agreement with experimental observations and cluster-variation method results.
Resumo:
The decomposition of the beta phase in rapidly quenched Ti-2.8 at. pet Co, Ti-5.4 at. pet Ni, Ti-4.5 at. pet, and 5.5 at. pet Cu alloys has been investigated by electron microscopy. During rapid quenching, two competitive phase transformations, namely martensitic and eutectoid transformation, have occurred, and the region of eutectoid transformation is extended due to the high cooling rates involved. The beta phase decomposed into nonlamellar eutectoid product (bainite) having a globular morphology in Ti-2.8 pet Co and Ti-4.5 pet Cu (hypoeutectoid) alloys. In the near-eutectoid Ti-5.5 pet Cu alloy, the decomposition occurred by a lamellar (pearlite) type, whereas in Ti-5.4 pct Ni (hypereutectoid), both morphologies were observed. The interfaces between the proeutectoid alpha and the intermetallic compound in the nonlamellar type as well as between the proeutectoid alpha and the pearlite were often found to be partially coherent. These findings are in agreement with the Lee and Aaronson model proposed recently for the evolution of bainite and pearlite structures during the solid-state transformations of some titanium-eutectoid alloys. The evolution of the Ti2Cu phase during rapid quenching involved the formation of a metastable phase closely related to an ''omega-type'' phase before the equilibrium phase formed. Further, the lamellar intermetallic compound Ti2Cu was found to evolve by a sympathetic nucleation process. Evidence is established for the sympathetic nucleation of the proeutectoid alpha crystals formed during rapid quenching.
Resumo:
Phase relations in the system La-Rh-O at 1223 Ii have been determined by examination of equilibrated samples by optical and scanning electron microscopy, powder X-ray diffraction (XRD), and energy-dispersive analysis of X-rays (EDAX). Only one ternary oxide, LaRhO3, with distorted orthorhombic perovskite structure (Pbnm, a = 0.5525, b = 0.5680, and c = 0.7901 nm) was identified. The alloys and intermetallics along the La-Rh binary are in equilibrium with La2O3. The thermodynamic properties of LaRhO3 were determined in the temperature range 890 to 1310 K, using a solid-state cell incorporating yttria-stabilized zirconia as the electrolyte. A new four-compartment design of the emf cell was used to enhance the accuracy of measurement. For the reaction 1/2La(2)O(3) + 1/2Rh(2)O(3) --> LaRhO3, Delta G degrees = - 70 780 + 4.89T (+/- 90) J.mol(-1) The compound decomposes on heating to a mixture of La2O3, Ph and O-2. The calculated decomposition temperatures are 1843 (+/- 5) K in pure O-2 and 1728 (+/- 5) K in air at a pressure of 1.01 x 10(5) Pa. The phase diagrams for the system La-Rh-O at different partial pressures of oxygen are calculated from the thermodynamic information.
Resumo:
We report Raman scattering from the boehmite, gamma-, delta- and alpha-phases of the alumina gel. Samples are characterized by transmission and scanning electron microscopy, X-ray diffraction and density measurements. The main Raman line in the boehmite phase is red-shifted as well as asymmetrically broadened with respect to that in the crystalline boehmite, signifying the nanocrystalline nature of the gel. Raman signatures are absent in the gamma- and delta-phases due to the disorder in cation vacancies. We also show that low frequency Raman scattering from the boehmite phase resembles that from a fractal network, characterized in terms of fraction dimension ($) over tilde d. Taking Hausdorff dimension D of the boehmite gel to be 2.5 (or 3.0), the value of ($) over tilde d is 1.33 +/- 0.02 (or 1.44 +/- 0.02), which is close to the theoretically predicted value of 4/3.
Resumo:
Phase relationships in the CaO-SrO-CuO system in pure oxygen at 1.01 x 10(5) Pa pressure were determined by equilibrating different compositions at 1123 K for similar to 120 h and analyzing the phases present in the quenched samples using X-ray diffraction (XRD), optical and scanning electron microscopy, and energy dispersive analysis of X-rays (EDAX). Four solid solution series were observed in the system, The CawSr1-wO monoxide solid solution with rock-salt structure was found to exhibit an asymmetric miscibility gap, The mixing properties of the monoxide system were deduced using a subregular solution model, For the (CaxSr1-x)(2)CuO3 series, a complete solid solution range with orthorhombic space group Immm was obtained. Calcium substituted for strontium up to 68 at. % in SrCuO2+delta and 51.5 at. % in Sr14Cu24O41-delta. The tie lines between the solid solutions were determined accurately, The activity-composition relations in (CaxSr1-x)(2)CuO3, CaySr1-yCuO2+delta, and (Ca2Sr1-z)(14)Cu24O41-delta solid solutions were determined from experimental tie lines. Activities in the (CaxSr1-x)(2)CuO3 and CaySr1-yCuO2+delta series were close to the predictions of the Temkin model, The behavior of the (CazSr1-(z))(14)Cu24O41-delta solid solution was more complex, with the activity of SrCu(24/14)O-(41-delta/14) exhibiting both positive and negative deviations from ideality. Gibbs energy of formation of the CaCuO2+delta metastable phase at 1123 K was deduced from an analysis of the phase diagram.
Resumo:
Coarse BO2·xH2O (2 < x < 80) gels, free of anion contaminants react with A(OH)2 under refluxing conditions at 70�100°C giving rise to crystallites of single phased, nanometer size powders of ABO3 perovskites (A = Ba, Sr, Ca, Mg, Pb; B = Zr, Ti, Sn). Solid solutions of perovskites could be prepared from compositionally modified gels or mixtures of A(OH)2. Donor doped perovskites could also be prepared from the same method so that the products after processing are often semiconducting. Faster interfacial diffusion of A2+ ions into the gel generates the crystalline regions whose composition is controllable by the A/B ratio as well as the A(OH)2 concentration.
Resumo:
The time evolution of colloidal gold particles in the nanometric regime has been investigated by employing electron microscopy and electronic absorption spectroscopy. The particle size distributions are essentially Gaussian and show the same time dependence for both the mean and the standard deviation, enabling us to obtain a time-independent universal curve for the particle size. Temperature dependent studies show the growth to be an activated process with a barrier of about 18 kJ mol(-1). We present a phenomenological equation for the evolution of particle size and suggest that the growth process is stochastic.
Resumo:
Undoped and Te-doped gallium antimonide (GaSb) layers have been grown on GaSb bulk substrates by the liquid phase epitaxial technique from Ga-rich and Sb-rich melts. The nucleation morphology of the grown layers has been studied as a function of growth temperature and substrate orientation. MOS structures have been fabricated on the epilayers to evaluate the native defect content in the grown layers from the C-V characteristics. Layers grown from antimony rich melts always exhibit p-type conductivity. In contrast, a type conversion from p- to n- was observed in layers grown from gallium rich melts below 400 degrees C. The electron mobility of undoped n-type layers grown from Ga-rich melts and tellurium doped layers grown from Sb- and Ga-rich solutions has been evaluated.
Resumo:
A simple method for the preparation of monophasic beta-SiAlON using nitridation of Si and AIN with an oxygen partial pressure of 10(-4) atm is described. The effect of the AlN/Si ratio in the initial mixture on the formation of beta-SiAlON is discussed. The likely mechanism of the formation of beta-SiAlON is outlined.
Resumo:
An account is given of the research that has been carried out on mechanical alloying/milling (MA/MM) during the past 25 years. Mechanical alloying, a high energy ball milling process, has established itself as a viable solid state processing route for the synthesis of a variety of equilibrium and non-equilibrium phases and phase mixtures. The process was initially invented for the production of oxide dispersion strengthened (ODS) Ni-base superalloys and later extended to other ODS alloys. The success of MA in producing ODS alloys with better high temperature capabilities in comparison with other processing routes is highlighted. Mechanical alloying has also been successfully used for extending terminal solid solubilities in many commercially important metallic systems. Many high melting intermetallics that are difficult to prepare by conventional processing techniques could be easily synthesised with homogeneous structure and composition by MA. It has also, over the years, proved itself to be superior to rapid solidification processing as a non-equilibrium processing tool. The considerable literature on the synthesis of amorphous, quasicrystalline, and nanocrystalline materials by MA is critically reviewed. The possibility of achieving solid solubility in liquid immiscible systems has made MA a unique process. Reactive milling has opened new avenues for the solid state metallothermic reduction and for the synthesis of nanocrystalline intermetallics and intermetallic matrix composites. Despite numerous efforts, understanding of the process of MA, being far from equilibrium, is far from complete, leaving large scope for further research in this exciting field.
Resumo:
A novel phase of nickel hydroxide with an average interlayer spacing 5.4-5.6 Angstrom has been synthesized which is neither ct nor beta type but is an interstratification of both. It ages to the beta form in strong alkali. These observations have implications on the dissolution-reprecipitation mechanism suggested for the alpha-->beta transformation of nickel hydroxide.
Resumo:
Devitrification of spray pyrolysed, amorphous ZrO2-Al2O3 solid solution produces nanocrystalline microstructures (grain sizes 10-20 nm). In this study, spray pyrolysed amorphous ZrO2-40 mol% Al2O3 powder displayed good sinterability during decomposition, after spraying, of the nitrate precursors up to 1023K. Hot pressing of fully pyrolysed, pre-sintered (more than 70% dense) pellets at 923K and 750 MPa produced an amorphous pellet with less than 2% porosity. The results indicate the possibility of producing dense, amorphous pellets that can be heat treated further to produce nanocrystalline microstructures conducive for superplasticity.