922 resultados para Functional outcomes
Resumo:
The Australian construction industry is characterized as being a competitive and risky business environment due to lack of cooperation, insufficient trust, ineffective communication and adversarial relationships which are likely lead to poor project performance. Relational contracting (RC) is advocated by literature as an innovative approach to improve the procurement process in the construction industry. Various studies have collectively added to the current knowledge of known RC norms, but there seem to be little effort on investigating the determinants of RC and its efficacy on project outcomes. In such circumstances, there is a lack of evidence and explanation on the manner on how these issues lead to different performance. Simultaneously, the New Engineering Contract (NEC) that embraced the concept of RC is seen as a modern way of contracting and also considered as one of the best approaches to the perennial problem of improving adversarial relationships within the industry. The reality of practice of RC in Australia is investigated through the lens of the NEC. A synthesis of literature views on the concept, processes and tools of RC is first conducted to develop the framework of RC.
Resumo:
Previous research on entrepreneurial teams has failed to settle the controversy over whether team heterogeneity helps or hinders new venture performance. Reconciling this inconsistency, this paper suggests a new conceptual approach to disentangle differential effects of team heterogeneity by modeling two separate heterogeneity dimensions, namely knowledge scope and knowledge disparity. Analyzing unique data on functional experiences of the members of 337 start-up teams, we find support for our contention of team heterogeneity as a two-dimensional concept. Results suggest that knowledge disparity negatively relates to both start-ups’ entrepreneurial and innovative performance. In contrast, we find knowledge scope to positively affect entrepreneurial performance, while it shows an inverse U-shaped relationship to innovative start-up performance.
Resumo:
The tumor suppressor PTEN antagonizes phosphatidylinositol 3-kinase (PI3K), which contributes to tumorigenesis in many cancer types. While PTEN mutations occur in some melanomas, their precise mechanistic consequences have yet to be elucidated. We sought to identify novel downstream effectors of PI3K using a combination of genomic and functional tests. Microarray analysis of 53 melanoma cell lines identified 610 genes differentially expressed (P<0.05) between wild-type lines and those with PTEN aberrations. Many of these genes are known to be involved in the PI3K pathway and other signaling pathways influenced by PTEN. Validation of differential gene expression by qRT-PCR was performed in the original 53 cell lines and an independent set of 18 melanoma lines with known PTEN status. Osteopontin (OPN), a secreted glycophosphoprotein that contributes to tumor progression, was more abundant at both the mRNA and protein level in PTEN mutants. The inverse correlation between OPN and PTEN expression was validated (P<0.02) by immunohistochemistry using melanoma tissue microarrays. Finally, treatment of cell lines with the PI3K inhibitor LY294002 caused a reduction in expression of OPN. These data indicate that OPN acts downstream of PI3K in melanoma and provides insight into how PTEN loss contributes to melanoma development.
Resumo:
We report on the use of the hydrogen bond accepting properties of neutral nitrone moieties to prepare benzylic-amide-macrocycle-containing [2]rotaxanes in yields as high as 70 %. X-Ray crystallography shows the presence of up to four intercomponent hydrogen bonds between the amide groups of the macrocycle and the two nitrone groups of the thread. Dynamic 1H NMR studies of the rates of macrocycle pirouetting in nonpolar solutions indicate that amide-nitrone hydrogen bonds are particularly strong, ~1.3 and ~0.2 kcal mol-1 stronger than similar amide-ester and amide-amide interactions, respectively. In addition to polarizing the N-O bond through hydrogen bonding, the rotaxane structure affects the chemistry of the nitrone groups in two significant ways: The intercomponent hydrogen bonding activates the nitrone groups to electrochemical reduction, a one electron reduction of the rotaxane being stablized by a remarkable 400 mV (8.1 kcal mol-1) with respect to the same process in the thread; encapsulation, however, protects the same functional groups from chemical reduction with an external reagent (and slows down electron transfer to and from the electroactive groups in cyclicvoltammetry experiments). Mechanical interlocking with a hydrogen bonding molecular sheath thus provides a route to an encapsulated polarized functional group and radical anions of significant kinetic and thermodynamic stability.