927 resultados para Fuel-cell Applications
Resumo:
A DC-DC step-up micro power converter for solar energy harvesting applications is presented. The circuit is based on a switched-capacitorvoltage tripler architecture with MOSFET capacitors, which results in an, area approximately eight times smaller than using MiM capacitors for the 0.131mu m CMOS technology. In order to compensate for the loss of efficiency, due to the larger parasitic capacitances, a charge reutilization scheme is employed. The circuit is self-clocked, using a phase controller designed specifically to work with an amorphous silicon solar cell, in order to obtain themaximum available power from the cell. This will be done by tracking its maximum power point (MPPT) using the fractional open circuit voltage method. Electrical simulations of the circuit, together with an equivalent electrical model of an amorphous silicon solar cell, show that the circuit can deliver apower of 1132 mu W to the load, corresponding to a maximum efficiency of 66.81%.
Resumo:
This paper presents a step-up micro-power converter for solar energy harvesting applications. The circuit uses a SC voltage tripler architecture, controlled by an MPPT circuit based on the Hill Climbing algorithm. This circuit was designed in a 0.13 mu m CMOS technology in order to work with an a-Si PV cell. The circuit has a local power supply voltage, created using a scaled down SC voltage tripler, controlled by the same MPPT circuit, to make the circuit robust to load and illumination variations. The SC circuits use a combination of PMOS and NMOS transistors to reduce the occupied area. A charge re-use scheme is used to compensate the large parasitic capacitors associated to the MOS transistors. The simulation results show that the circuit can deliver a power of 1266 mu W to the load using 1712 mu W of power from the PV cell, corresponding to an efficiency as high as 73.91%. The simulations also show that the circuit is capable of starting up with only 19% of the maximum illumination level.
Resumo:
A voltage limiter circuit for indoor light energy harvesting applications is presented. This circuit is a part of a bigger system, whose function is to harvest indoor light energy, process it and store it, so that it can be used at a later time. This processing consists on maximum power point tracking (MPPT) and stepping-up, of the voltage from the photovoltaic (PV) harvester cell. The circuit here described, ensures that even under strong illumination, the generated voltage will not exceed the limit allowed by the technology, avoiding the degradation, or destruction, of the integrated die. A prototype of the limiter circuit was designed in a 130 nm CMOS technology. The layout of the circuit has a total area of 23414 mu m(2). Simulation results, using Spectre, are presented.
Resumo:
Future industrial control/multimedia applications will increasingly impose or benefit from wireless and mobile communications. Therefore, there is an enormous eagerness for extending currently available industrial communications networks with wireless and mobility capabilities. The RFieldbus European project is just one example, where a PROFIBUS-based hybrid (wired/wireless) architecture was specified and implemented. In the RFieldbus architecture, interoperability between wired and wireless components is achieved by the use specific intermediate networking systems operating at the physical layer level, i.e. operating as repeaters. Instead, in this paper we will focus on a bridge-based approach, which presents several advantages. This concept was introduced in (Ferreira, et al., 2002), where a bridge-based approach was briefly outlined. Then, a specific Inter-Domain Protocol (IDP) was proposed to handle the Inter-Domain transactions in such a bridge-based approach (Ferreira, et al., 2003a). The major contribution of this paper is in extending these previous works by describing the protocol extensions to support inter-cell mobility in such a bridge-based hybrid wired/wireless PROFIBUS networks.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Mestrado Integrado em Engenharia Química e Bioquímica
Resumo:
[CoCl(-Cl)(Hpz(Ph))(3)](2) (1) and [CoCl2(Hpz(Ph))(4)] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))(3) and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible (CoCoIII)-Co-II oxidations and (CoCoI)-Co-II reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). Insitu X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co-III site. Complex 2 showed low invitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.
Resumo:
Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.
Resumo:
The preliminary results from a bipolar industrial solidstate based Marx generator, developed for the food industry, capable of delivering 25 kV/250 A positive and negative pulses with 12 kW average power, are presented and discussed. This modular topology uses only four controlled switches per cell, 27 cells in total that can be charged up to 1000V each, the two extra cells are used for droop compensation. The triggering signals for all the switches are generated by a FPGA. Considering that biomaterials are similar to resistive type loads, experimental results from this new bipolar 25 kV modulator into resistive loads are presented and discussed.
Resumo:
This work evaluates the possibility of using spent coffee grounds (SCG) for biodiesel production and other applications. An experimental study was conducted with different solvents showing that lipid content up to 6 wt% can be obtained from SCG. Results also show that besides biodiesel production, SCG can be used as fertilizer as it is rich in nitrogen, and as solid fuel with higher heating value (HHV) equivalent to some agriculture and wood residues. The extracted lipids were characterized for their properties of acid value, density at 15 °C, viscosity at 40 °C, iodine number, and HHV, which are negatively influenced by water content and solvents used in lipid extraction. Results suggest that for lipids with high free fatty acids (FFA), the best procedure for conversion to biodiesel would be a two-step process of acid esterification followed by alkaline transesterification, instead of a sole step of direct transesterification with acid catalyst. Biodiesel was characterized for its properties of iodine number, acid value, and ester content. Although these quality parameters were not within the limits of NP EN 14214:2009 standard, SCG lipids can be used for biodiesel, blended with higher-quality vegetable oils before transesterification, or the biodiesel produced from SCG can be blended with higher-quality biodiesel or even with fossil diesel, in order to meet the standard requirements.
Resumo:
This book discusses in detail the CMOS implementation of energy harvesting. The authors describe an integrated, indoor light energy harvesting system, based on a controller circuit that dynamically and automatically adjusts its operation to meet the actual light circumstances of the environment where the system is placed. The system is intended to power a sensor node, enabling an autonomous wireless sensor network (WSN). Although designed to cope with indoor light levels, the system is also able to work with higher levels, making it an all-round light energy harvesting system. The discussion includes experimental data obtained from an integrated manufactured prototype, which in conjunction with a photovoltaic (PV) cell, serves as a proof of concept of the desired energy harvesting system. © 2016 Springer International Publishing. All rights are reserved.
Resumo:
Dissertation presented to obtain a Ph.D. degree in Engineering and Technology Sciences, Biotechnology at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Dissertação para obtenção do Grau de Mestre em Energias Renováveis – Conversão Eléctrica e Utilização Sustentáveis
Resumo:
Dissertação para obtenção do Grau de Doutor em Bioengenharia
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemisry, Biotechnology
Resumo:
Dissertation to obtain the Doctoral degree in Physics Engineering