929 resultados para Friction welding, microdurezze, alluminio, micrografie
Resumo:
Several students are pictured in a classroom in the Welding Department at the New York Trade School. Some are shown emerging from welding booths at the right of the photograph. Black and white photograph.
Resumo:
Friction plays a key role in causing slipperiness as a low coefficient of friction on the road may result in slippery and hazardous conditions. Analyzing the strong relation between friction and accident risk on winter roads is a difficult task. Many weather forecasting organizations use a variety of standard and bespoke methods to predict the coefficient of friction on roads. This article proposes an approach to predict the extent of slipperiness by building and testing an expert system. It estimates the coefficient of friction on winter roads in the province of Dalarna, Sweden using the prevailing weather conditions as a basis. Weather data from the road weather information system, Sweden (RWIS) was used. The focus of the project was to use the expert system as a part of a major project in VITSA, within the domain of intelligent transport systems
Resumo:
Recent developments in biological research, has shown that the initial maximum permissible exposure (MPE) limits for protection of workers from risks associated with artificial optical radiations were more stringent than needed. Using the most recent MPE limits for artificial optical radiation this piece of work was focused on the investigation of the level of visible light attenuation needed by automatic welding filters in case of switching failure. Results from the comparison of different exposure standards were employed in investigating the need of Vis/IR and blue light transmittance requirement for automatic welding filters. Real and arbitrary spectra were taken into consideration for the worst and best case scenarios of artificial optical radiations. An excel worksheet developed during the execution of this project took into consideration the exposure from different light sources and the precision of the spectrometer used in measuring the transmittances of a welding filter. The worksheet was developed and tested with known product properties to investigate the validity of its formulation. The conclusion drawn from this project was that attenuation in the light state will be needed for products with the darkest state shade 11 or higher. Also shown is that current welding filter protects the eye well enough even in the case of switching failure.
Resumo:
A student in the Welding Department at the New York Trade School is shown working. Black and white photograph.
Resumo:
The discovery of the spatial uniform coexistence of superconductivity and ferromagnetism in ruthenocuprates, RuSr2GdCu2O8 (Ru-1212), has spurred an extraordinary development in the study of the competition between magnetism and superconductivity. However, several points of their preparation process and characterization that determine their superconductive behaviour are still obscure. The improvement of sample preparation conditions involves some thermal treatments in inert atmosphere. Anelastic spectroscopy measurements were made using an inverted torsion pendulum, operating with an oscillation frequency of 38 Hz, temperature in the 90 and 310 K range, heating rate of 1 K/min, and vacuum better than 10(-3) Pa. The results show anelastic relaxation peaks at 210 K related to the presence of interstitial oxygen atoms. The peaks decrease significantly with the oxygen loss caused by the heat treatments in vacuum, appearing again after the annealing of the sample in an oxygen atmosphere. These observed peaks are clearly related to the additional oxygen atoms, with activation energy 0.13 and 0.36 eV, and can be explained in terms by diffusional jumps of interstitial oxygen in the RuO2 planes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to analyze the effect of successive TIG (tungsten inert gas) welding repairs on the reverse bending fatigue strength of AISI 4130 steel, which is widely used in components critical to the flight-safety. In order to simulate the abrupt maneuvers, wind bursts, motor vibration and helixes efforts, which generate cyclic bending loadings at the welded joints of a specific aircraft component called motor cradle, experimental reverse bending fatigue tests were carried out on specimens made from hot-rolled steel plate, 1.10 mm (0.043 in) thick, by mean of a SCHENK PWS equipment, with load ratio R = -1, under constant amplitude, at 30 Hz frequency and room temperature. It was observed that the bending fatigue strength decreases after the TIG (Tungsten Inert Gas) welding process application on AISI 4130 steel, with subsequent decrease due to re-welding sequence as well. Microstructural analyses and microhardness measurements on the base material, heat-affected zone (HAZ) and weld metal, as well as the effects of the weld bead geometry on the obtained results, have complemented this study.
Resumo:
Structures critical to the flight-safety are commonly submitted to several maintenance repairs at the welded joints in order to prolong the in-service life of aircrafts. The aim of this study is to analyze the effects of Tungsten Inert Gas (TIG) welding repair on the structural integrity of the AISI 4130 aeronautical steel by means of experimental fatigue crack growth tests in base-material, heat-affected zone (HAZ) and weld metal. The tests were performed on hot-rolled steel plate specimens, 0.89 mm thick, with load ratio R = 0.1, constant amplitude, at 10 Hz frequency and room temperature. Increase of the fracture resistance was observed in the weld metal but decreasing in the HAZ after repair. The results were associated to microhardness and microstructural changes with the welding sequence. (C) 2010 Published by Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study a pulsed Nd:YAG laser was used to join Monel 400 thin foil with 100 mu m thickness. Pulse energy was varied from 1.0 to 2.25J at small increments of 0.25J. The macro and microstructures were analyzed by optical microscopy, tensile shear test and microhardness. Sound laser welds without discontinuities were obtained with 1.5 J pulse energy. Results indicate that using a precise control of the pulse energy, and so a control of the bottom foil dilution rate, it is possible to weld Monel 400 thin foil. The process appeared to be very sensitive to the gap between couples.
Resumo:
In this study a pulsed Nd:YAG laser was used to join Hastelloy C-276 thin foil with 100 microns thickness. Pulse energy was varied from 1.0 to 2.25 J at small increments of 0.25 J with a 4 ms pulse duration. The macro and microstructures of the welds were analyzed by optical and electronic microscopy, tensile shear test and microhardness. Sound laser welds without discontinuities were obtained with 1.5 J pulse energy. Results indicate that using a precise control of the pulse energy, and so a control of the dilution rate, it is possible to weld Hastelloy C-276 thin foil by pulsed Nd: YAG laser. (C) 2012 Published by Elsevier B. V. Selection and/or review under responsibility of Bayerisches Laserzentrum GmbH
Resumo:
Objective: To investigate the degree of debris, roughness, and friction of stainless steel orthodontic archwires before and after clinical use.Materials and Methods: For eight individuals, two sets of three brackets (n = 16) each were bonded from the first molar to the first premolar. A passive segment of 0.019- x 0.025-inch stainless steel archwire was inserted into the brackets and tied by elastomeric ligature. Debris level (via scanning electron microscopy), roughness, and frictional force were evaluated as-received and after 8 weeks of intraoral exposure. Mann-Whitney, Wilcoxon signed-rank, and Spearman correlation tests were used for statistical analysis at the .05 level of significance.Results: There were significant increases in the level of debris (P = .0004), roughness of orthodontic wires (P = .002), and friction (P = .0001) after intraoral exposure. Significant positive correlations (P < .05) were observed between these three variables.Conclusion: Stainless steel rectangular wires, when exposed to the intraoral environment for 8 weeks, showed a significant increase in the degree of debris and surface roughness, causing an increase in friction between the wire and bracket during the mechanics of sliding. (Angle Orthod. 2010;80:521-527.)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study compared the tensile strength and fracture mechanism of tungsten inert gas (TIG) welds in cylindrical rods of commercially pure titanium (cp Ti) with those of laser welds and intact samples. Thirty dumbbell-shaped samples were developed by using brass rods as patterns. The samples were invested in casings, subjected to thermal cycles, and positioned in a plasma arc welding machine under argon atmosphere and vacuum, and titanium was injected under vacuum/pressure. The samples were X-rayed to detect possible welding flaws and randomly assigned to three groups to test the tensile strength and the fracture mechanism: intact, laser welding, and TIG welding. The tensile test results were investigated using ANOVA, which indicated that the samples were statistically similar. The fracture analysis showed that the cpTi samples subjected to laser welding exhibited brittle fracture and those subjected to TIG welding exhibited mixed brittle/ductile fracture with a predominance of ductile fracture with the presence of microcavities and cleavage areas. Intact samples presented the characteristic straightening in the fracture areas, indicating the ductility of the material.