954 resultados para Flame tomography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a set of Roche tomography reconstructions of the secondary stars in the cataclysmic variables AM Her, QQ Vul, IP Peg and HU Aqr. The image reconstructions show distinct asymmetries in the irradiation pattern for all four systems that can be attributed to shielding of the secondary star by the accretion stream/column in AM Her, QQ Vul and HU Aqr, and increased irradiation by the bright-spot in IP Peg. We use the entropy landscape technique to derive accurate system parameters (M-1, M-2, i and gamma) for the four binaries. In principle, this technique should provide the most reliable mass determinations available, since the intensity distribution across the secondary star is known. We also find that the intensity distribution can systematically affect the value of gamma derived from circular orbit fits to radial velocity variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roche tomography is a technique used for imaging the Roche-lobe-filling secondary stars in cataclysmic variables (CVs). In order to interpret Roche tomograms correctly, one must determine whether features in the reconstruction are real, or the result of statistical or systematic errors. We explore the effects of systematic errors using reconstructions of simulated data sets, and show that systematic errors result in characteristic distortions of the final reconstructions that can be identified and corrected. In addition, we present a new method of estimating statistical errors on tomographic reconstructions using a Monte Carlo bootstrapping algorithm, and show this method to be much more reliable than Monte Carlo methods which 'jiggle' the data points in accordance with the size of their error bars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the light curve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33 V = 8.3, v sini = 86 km s-1). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas-giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit, we directly derive the size of the planet, the inclination and obliquity of its orbital plane and its retrograde orbital motion relative to the spin of the star. This kind of analysis opens the way to studying the formation of planets around a whole new class of young, early-type stars, hence under different physical conditions and generally in an earlier stage of formation than in sharp-lined late-type stars. The reflex orbital motion of the star caused by the transiting planet is small, yielding an upper mass limit of 4.1MJupiter on the planet. We also find evidence of a third body of substellar mass in the system, which may explain the unusual orbit of the transiting planet. In HD 15082, the stellar line profiles also show evidence of non-radial pulsations, clearly distinct from the planetary transit signal. This raises the intriguing possibility that tides raised by the close-in planet may excite or amplify the pulsations in such stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a procedure based on spatially-resolved near-infrared imaging, in order to observe temperature and composition maps in gas-solid packed beds subjected to effects of aspect ratio and non-isothermal conditions. The technique was applied to the water vapour flow in a packed bed adsorber of low aspect ratio, filled with silica gel, using a tuneable diode laser, focal planar array detector and tomographic reconstruction. The 2D projected images from parallel scanning permitted data to be retrieved from the packing and above the packing sections of 12.0×12.0×18.2mm at a volume-resolution of 0.15×0.15×0.026mm and a time-resolution of less than 3min. The technique revealed uneven temperature and composition maps in the core packed bed and in the vicinity of the wall due to flow maldistribution. In addition, the heat uptake from the packed bed and local cross-mixing were experimentally ascertained by local profiles of the water vapour composition and temperature under various aspect ratios and feed flow rates. The relative deviations in temperature and compositions were 11.1% and 9.3%, respectively. The deviation in composition, which covers the packing and above the packing sections, was slightly higher than the deviation of 8% obtained up-to-date but was limited to the exit of a packed bed adsorber. © 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we used optical coherence tomography (OCT) to extensively investigate, for the first time, the effect that microneedle (MN) geometry (MN height, and MN interspacing) and force of application have upon penetration characteristics of soluble poly(methylvinylether-co-maleic anhydride, PMVE/MA) MN arrays into neonatal porcine skin in vitro. The results from OCT investigations were then used to design optimal and suboptimal MN-based drug delivery systems and evaluate their drug delivery profiles cross full thickness and dermatomed neonatal porcine skin in vitro. It was found that increasing the force used for MN application resulted in a significant increase in the depth of penetration achieved within neonatal porcine skin. For example, MN of 600 µm height penetrated to a depth of 330 µm when inserted at a force of 4.4 N/array, while the penetration increased significantly to a depth of 520 µm, when the force of application was increased to 16.4 N/array. At an application force of 11.0 N/array it was found that, in each case, increasing MN height from 350 to 600 µm to 900 µm led to a significant increase in the depth of MN penetration achieved. Moreover, alteration of MN interspacing had no effect upon depth of penetration achieved, at a constant MN height and force of application. With respect to MN dissolution, an approximate 34% reduction in MN height occurred in the first 15 min, with only 17% of the MN height remaining after a 3-hour period. Across both skin models, there was a significantly greater cumulative amount of theophylline delivered after 24 h from an MN array of 900 µm height (292.23 ± 16.77 µg), in comparison to an MN array of 350 µm height (242.62 ± 14.81 µg) (p < 0.001). Employing full thickness skin significantly reduced drug permeation in both cases. Importantly, this study has highlighted the effect that MN geometry and application force have upon the depth of penetration into skin. While it has been shown that MN height has an important role in the extent of drug delivered across neonatal porcine skin from a soluble MN array, further studies to evaluate the full significance of MN geometry on MN mediated drug delivery are now underway. The successful use of OCT in this study could prove to be a key development for polymeric MN research, accelerating their commercial exploitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a multichannel Thomson spectrometer we have implemented a tomographic approach allowing the reconstruction of the emission characteristic of a laser driven proton source with high energy and spatial resolution. The results demonstrate the complexity of the temporal and spatial characteristics of such a source. The emitted proton beam, which is laminar and divergent at high energies, becomes convergent at low energies. This implies that a fraction of the proton beam having this kinetic energy is emitted in a collimated way from the target at the

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: F-18-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We aimed to develop a clinically relevant delayed union/non-union fracture model to evaluate a cell therapy intervention repair strategy. Histology, three-dimensional (3D) micro-computed tomography (micro-CT) imaging and mechanical testing were utilized to develop an analytical protocol for qualitative and quantitative assessment of fracture repair. An open femoral diaphyseal osteotomy, combined with periosteal diathermy and endosteal excision, was held in compression by a four pin unilateral external fixator. Three delayed union/non-union fracture groups established at 6 weeks-(a) a control group, (b) a cell therapy group, and (c) a group receiving phosphate-buffered saline (PBS) injection alone-were examined subsequently at 8 and 14 weeks. The histological response was combined fibrous and cartilaginous non-unions in groups A and B with fibrous non-unions in group C. Mineralized callus volume/total volume percentage showed no statistically significant differences between groups. Endosteal calcified tissue volume/endosteal tissue volume, at the center of the fracture site, displayed statistically significant differences between 8 and 14 weeks for cell and PBS intervention groups but not for the control group. The percentage load to failure was significantly lower in the control and cell treatment groups than in the PBS alone group. High-resolution micro-CT imaging provides a powerful tool to augment characterization of repair in delayed union/non-union fractures together with outcomes such as histology and mechanical strength measurement. Accurate, nondestructive, 3D identification of mineralization progression in repairing fractures is enabled in the presence or absence of intervention strategies. (c) 2007 Orthopaedic Research Society.