989 resultados para Finnish library network
Resumo:
Disease resistance is associated with a plant defense response that involves an integrated set of signal transduction pathways. Changes in the expression patterns of 2.375 selected genes were examined simultaneously by cDNA microarray analysis in Arabidopsis thaliana after inoculation with an incompatible fungal pathogen Alternaria brassicicola or treatment with the defense-related signaling molecules salicylic acid (SA), methyl jasmonate (MJ), or ethylene, Substantial changes (up- and down-regulation) in the steady-state abundance of 705 mRNAs were observed in response to one or more of the treatments, including known and putative defense-related genes and 106 genes with no previously described function or homology, In leaf tissue inoculated with A. brassicicola, the abundance of 168 mRNAs was increased more than 2.5-fold, whereas that of 39 mRNAs was reduced. Similarly, the abundance of 192, 221, and 55 mRNAs was highly (>2.5-fold) increased after treatment with SA, MJ, and ethylene, respectively. Data analysis revealed a surprising level of coordinated defense responses, including 169 mRNAs regulated by multiple treatments/defense pathways. The largest number of genes coinduced (one of four induced genes) and corepressed was found after treatments with SA and MJ. In addition, 50% of the genes induced by ethylene treatment were also induced by MJ treatment. These results indicated the existence of a substantial network of regulatory interactions and coordination occurring during plant defense among the different defense signaling pathways, notably between the salicylate and jasmonate pathways that were previously thought to act in an antagonistic fashion.
Resumo:
We have previously demonstrated that or-smooth muscle (alpha -SM) actin is predominantly distributed in the central region and beta -non-muscle (beta -NM) actin in the periphery of cultured rabbit aortic smooth muscle cells (SMCs). To determine whether this reflects a special form of segregation of contractile and cytoskeletal components in SMCs, this study systematically investigated the distribution relationship of structural proteins using high-resolution confocal laser scanning fluorescent microscopy. Not only isoactins but also smooth muscle myosin heavy chain, alpha -actinin, vinculin, and vimentin were heterogeneously distributed in the cultured SMCs. The predominant distribution of beta -NM actin in the cell periphery was associated with densely distributed vinculin plaques and disrupted or striated myosin and ol-actinin aggregates, which may reflect a process of stress fiber assembly during cell spreading and focal adhesion formation. The high-level labeling of alpha -SM actin in the central portion of stress fibers was related to continuous myosin and punctate alpha -actinin distribution, which may represent the maturation of the fibrillar structures. The findings also suggest that the stress fibers, in which actin and myosin filaments organize into sar-comere-like units with alpha -actinin-rich dense bodies analogous to Z-lines, are the contractile vimentin structures of cultured SMCs that link to the network of vimentin-containing intermediate alpha -actinin filaments through the dense bodies and dense plaques.
Resumo:
H-1- and C-13-NMR spectroscopy and FT-Raman spectroscopy are used to investigate the properties of a polymer gel dosimeter post-irradiation. The polymer gel (PACT) is composed of acrylamide, N,N'-methylene-bisacrylamide, gelatin, and water. The formation of a polyacrylamide network within the gelatin matrix follows a dose dependence nonlinearly correlated to the disappearance of the double bonds from the dissolved monomers within the absorbed dose range of 0-50 Gy. The signal from the gelatin remains constant with irradiation. We show that the NMR spin-spin relaxation times (T-2) of PAGs irradiated to up to 50 Gy measured in a NMR spectrometer and a clinical magnetic resonance imaging scanner can be modeled using the spectroscopic intensity of the growing polymer network. More specifically, we show that the nonlinear T-2 dependence against dose can be understood in terms of the fraction of protons in three different proton pools. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Continuous-valued recurrent neural networks can learn mechanisms for processing context-free languages. The dynamics of such networks is usually based on damped oscillation around fixed points in state space and requires that the dynamical components are arranged in certain ways. It is shown that qualitatively similar dynamics with similar constraints hold for a(n)b(n)c(n), a context-sensitive language. The additional difficulty with a(n)b(n)c(n), compared with the context-free language a(n)b(n), consists of 'counting up' and 'counting down' letters simultaneously. The network solution is to oscillate in two principal dimensions, one for counting up and one for counting down. This study focuses on the dynamics employed by the sequential cascaded network, in contrast to the simple recurrent network, and the use of backpropagation through time. Found solutions generalize well beyond training data, however, learning is not reliable. The contribution of this study lies in demonstrating how the dynamics in recurrent neural networks that process context-free languages can also be employed in processing some context-sensitive languages (traditionally thought of as requiring additional computation resources). This continuity of mechanism between language classes contributes to our understanding of neural networks in modelling language learning and processing.
Resumo:
With the advent of functional neuroimaging techniques, in particular functional magnetic resonance imaging (fMRI), we have gained greater insight into the neural correlates of visuospatial function. However, it may not always be easy to identify the cerebral regions most specifically associated with performance on a given task. One approach is to examine the quantitative relationships between regional activation and behavioral performance measures. In the present study, we investigated the functional neuroanatomy of two different visuospatial processing tasks, judgement of line orientation and mental rotation. Twenty-four normal participants were scanned with fMRI using blocked periodic designs for experimental task presentation. Accuracy and reaction time (RT) to each trial of both activation and baseline conditions in each experiment was recorded. Both experiments activated dorsal and ventral visual cortical areas as well as dorsolateral prefrontal cortex. More regionally specific associations with task performance were identified by estimating the association between (sinusoidal) power of functional response and mean RT to the activation condition; a permutation test based on spatial statistics was used for inference. There was significant behavioral-physiological association in right ventral extrastriate cortex for the line orientation task and in bilateral (predominantly right) superior parietal lobule for the mental rotation task. Comparable associations were not found between power of response and RT to the baseline conditions of the tasks. These data suggest that one region in a neurocognitive network may be most strongly associated with behavioral performance and this may be regarded as the computationally least efficient or rate-limiting node of the network.
Resumo:
Peptides that induce and recall T-cell responses are called T-cell epitopes. T-cell epitopes may be useful in a subunit vaccine against malaria. Computer models that simulate peptide binding to MHC are useful for selecting candidate T-cell epitopes since they minimize the number of experiments required for their identification. We applied a combination of computational and immunological strategies to select candidate T-cell epitopes. A total of 86 experimental binding assays were performed in three rounds of identification of HLA-All binding peptides from the six preerythrocytic malaria antigens. Thirty-six peptides were experimentally confirmed as binders. We show that the cyclical refinement of the ANN models results in a significant improvement of the efficiency of identifying potential T-cell epitopes. (C) 2001 by Elsevier Science Inc.
Resumo:
Axial X-ray Computed tomography (CT) scanning provides a convenient means of recording the three-dimensional form of soil structure. The technique has been used for nearly two decades, but initial development has concentrated on qualitative description of images. More recently, increasing effort has been put into quantifying the geometry and topology of macropores likely to contribute to preferential now in soils. Here we describe a novel technique for tracing connected macropores in the CT scans. After object extraction, three-dimensional mathematical morphological filters are applied to quantify the reconstructed structure. These filters consist of sequences of so-called erosions and/or dilations of a 32-face structuring element to describe object distances and volumes of influence. The tracing and quantification methodologies were tested on a set of undisturbed soil cores collected in a Swiss pre-alpine meadow, where a new earthworm species (Aporrectodea nocturna) was accidentally introduced. Given the reduced number of samples analysed in this study, the results presented only illustrate the potential of the method to reconstruct and quantify macropores. Our results suggest that the introduction of the new species induced very limited chance to the soil structured for example, no difference in total macropore length or mean diameter was observed. However. in the zone colonised by, the new species. individual macropores tended to have a longer average length. be more vertical and be further apart at some depth. Overall, the approach proved well suited to the analysis of the three-dimensional architecture of macropores. It provides a framework for the analysis of complex structures, which are less satisfactorily observed and described using 2D imaging. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The explosive growth in biotechnology combined with major advancesin information technology has the potential to radically transformimmunology in the postgenomics era. Not only do we now have readyaccess to vast quantities of existing data, but new data with relevanceto immunology are being accumulated at an exponential rate. Resourcesfor computational immunology include biological databases and methodsfor data extraction, comparison, analysis and interpretation. Publiclyaccessible biological databases of relevance to immunologists numberin the hundreds and are growing daily. The ability to efficientlyextract and analyse information from these databases is vital forefficient immunology research. Most importantly, a new generationof computational immunology tools enables modelling of peptide transportby the transporter associated with antigen processing (TAP), modellingof antibody binding sites, identification of allergenic motifs andmodelling of T-cell receptor serial triggering.
Resumo:
Background: A variety of methods for prediction of peptide binding to major histocompatibility complex (MHC) have been proposed. These methods are based on binding motifs, binding matrices, hidden Markov models (HMM), or artificial neural networks (ANN). There has been little prior work on the comparative analysis of these methods. Materials and Methods: We performed a comparison of the performance of six methods applied to the prediction of two human MHC class I molecules, including binding matrices and motifs, ANNs, and HMMs. Results: The selection of the optimal prediction method depends on the amount of available data (the number of peptides of known binding affinity to the MHC molecule of interest), the biases in the data set and the intended purpose of the prediction (screening of a single protein versus mass screening). When little or no peptide data are available, binding motifs are the most useful alternative to random guessing or use of a complete overlapping set of peptides for selection of candidate binders. As the number of known peptide binders increases, binding matrices and HMM become more useful predictors. ANN and HMM are the predictive methods of choice for MHC alleles with more than 100 known binding peptides. Conclusion: The ability of bioinformatic methods to reliably predict MHC binding peptides, and thereby potential T-cell epitopes, has major implications for clinical immunology, particularly in the area of vaccine design.
Resumo:
Alloys of Al, Al-0.15Mg, and Al-12Sn made using air atomized aluminum powder and pressed to green densities of 75 to 98 pet were sintered under argon or nitrogen. Sintering in argon is only effective at high green densities when magnesium is present. In contrast, highly porous aluminum can be sintered in nitrogen without the need for magnesium. The oxygen concentration in the gas is reduced by the aluminum through a self-gettering process. The outer layers of the porous powder compact serve as a getter for the inner layers such that the oxygen partial pressure is reduced deep within the pore network. Aluminum nitride then forms, either by direct reaction with the metal or by reduction of the oxide layer, and sintering follows.
Resumo:
This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.
Resumo:
Dysgraphia (agraphia) is a common feature of posterior cortical atrophy (PCA). However, detailed analyses of these spelling and writing impairments are infrequently conducted. LM is a 59-year-old woman with dysgraphia associated with PCA. She presented with a two-year history of decline in her writing and dressmaking skills. A 3D T-1-weighted MRI scan confirmed selective bi-parietal atrophy, with relative sparing of the hippocampi and other cortical regions. Analyses of LM's preserved and impaired spelling abilities indicated mild physical letter distortions and a significant spelling deficit characterised by letter substitutions, insertions, omissions, and transpositions that was systematically sensitive to word length while insensitive to real word versus nonword category, word frequency, regularity, imagery, grammatical class and ambiguity. Our findings suggest a primary graphemic buffer disorder underlies LM's spelling errors, possibly originating from disruption to the operation of a fronto-parietal network implicated in verbal working memory.
Resumo:
Spatial data has now been used extensively in the Web environment, providing online customized maps and supporting map-based applications. The full potential of Web-based spatial applications, however, has yet to be achieved due to performance issues related to the large sizes and high complexity of spatial data. In this paper, we introduce a multiresolution approach to spatial data management and query processing such that the database server can choose spatial data at the right resolution level for different Web applications. One highly desirable property of the proposed approach is that the server-side processing cost and network traffic can be reduced when the level of resolution required by applications are low. Another advantage is that our approach pushes complex multiresolution structures and algorithms into the spatial database engine. That is, the developer of spatial Web applications needs not to be concerned with such complexity. This paper explains the basic idea, technical feasibility and applications of multiresolution spatial databases.
Resumo:
Antigen recognition by cytotoxic CD8 T cells is dependent upon a number of critical steps in MHC class I antigen processing including proteosomal cleavage, TAP transport into the endoplasmic reticulum, and MHC class 1 binding. Based on extensive experimental data relating to each of these steps there is now the capacity to model individual antigen processing steps with a high degree of accuracy. This paper demonstrates the potential to bring together models of individual antigen processing steps, for example proteosome cleavage, TAP transport, and MHC binding, to build highly informative models of functional pathways. In particular, we demonstrate how an artificial neural network model of TAP transport was used to mine a HLA-binding database so as to identify H LA-binding peptides transported by TAP. This integrated model of antigen processing provided the unique insight that HLA class I alleles apparently constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3, and -A24) and those that are TAP-inefficient (HLA-A2, -B7, and -B8). Hence, using this integrated model we were able to generate novel hypotheses regarding antigen processing, and these hypotheses are now capable of being tested experimentally. This model confirms the feasibility of constructing a virtual immune system, whereby each additional step in antigen processing is incorporated into a single modular model. Accurate models of antigen processing have implications for the study of basic immunology as well as for the design of peptide-based vaccines and other immunotherapies. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.