993 resultados para Finite-Temperature
Resumo:
In order to use the finite element method for solving fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins effectively and efficiently, we have presented, in this paper, the new concept and numerical algorithms to deal with the fundamental issues associated with the fluid-rock interaction problems. These fundamental issues are often overlooked by some purely numerical modelers. (1) Since the fluid-rock interaction problem involves heterogeneous chemical reactions between reactive aqueous chemical species in the pore-fluid and solid minerals in the rock masses, it is necessary to develop the new concept of the generalized concentration of a solid mineral, so that two types of reactive mass transport equations, namely, the conventional mass transport equation for the aqueous chemical species in the pore-fluid and the degenerated mass transport equation for the solid minerals in the rock mass, can be solved simultaneously in computation. (2) Since the reaction area between the pore-fluid and mineral surfaces is basically a function of the generalized concentration of the solid mineral, there is a definite need to appropriately consider the dependence of the dissolution rate of a dissolving mineral on its generalized concentration in the numerical analysis. (3) Considering the direct consequence of the porosity evolution with time in the transient analysis of fluid-rock interaction problems; we have proposed the term splitting algorithm and the concept of the equivalent source/sink terms in mass transport equations so that the problem of variable mesh Peclet number and Courant number has been successfully converted into the problem of constant mesh Peclet and Courant numbers. The numerical results from an application example have demonstrated the usefulness of the proposed concepts and the robustness of the proposed numerical algorithms in dealing with fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We use the finite element method to simulate the rock alteration and metamorphic process in hydrothermal systems. In particular, we consider the fluid-rock interaction problems in pore-fluid saturated porous rocks. Since the fluid rock interaction takes place at the contact interface between the pore-fluid and solid minerals, it is governed by the chemical reaction which usually takes place very slowly at this contact interface, from the geochemical point of view. Due to the relative slowness of the rate of the chemical reaction to the velocity of the pore-fluid flow in the hydrothermal system to be considered, there exists a retardation zone, in which the conventional static theory in geochemistry does not hold true. Since this issue is often overlooked by some purely numerical modellers, it is emphasized in this paper. The related results from a typical rock alteration and metamorphic problem in a hydrothermal system have shown not only the detailed rock alteration and metamorphic process, but also the size of the retardation zone in the hydrothermal system. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
AlSi7Mg0.35 alloy was cast into permanent moulds using different pouring temperatures (725 to 625degreesC). As the pouring temperature decreased, the as-cast microstructure changed from a coarse dendritic structure, through fine equiaxed grains to fine rosette-like grains. The as-cast materials were then partially remelted and isothermally held at 580degreesC prior to semisolid casting into a stepped die. The feedstock material cast from a high temperature filled only half the die, with severe segregation and other defects. The low-temperature-poured material completely filled the die with negligible porosity. The quality of semisolid castings is significantly affected by the microstructure of the semisolid feedstock material that arises from a combination of as-cast and subsequent thermal treatment conditions. The paper describes (a) the influence of pouring temperature on the microstructure of feedstock; (b) microstructure evolution through remelting and (c) the quality of semisolid castings produced with this material. For A17Si0.35Mg alloy, low temperature pouring in the range of 625-650degreesC followed by suitable isothermal holding treatment can result in good quality semisolid casting.
Resumo:
We conduct a theoretical analysis of steady-state heat transfer problems through mid-crustal vertical cracks with upward throughflow in hydrothermal systems. In particular, we derive analytical solutions for both the far field and near field of the system. In order to investigate the contribution of the forced advection to the total temperature of the system, two concepts, namely the critical Peclet number and the critical permeability of the system, have been presented and discussed in this paper. The analytical solution for the far field of the system indicates that if the pore-fluid pressure gradient in the crust is lithostatic, the critical permeability of the system can be used to determine whether or not the contribution of the forced advection to the total temperature of the system is negligible. Otherwise, the critical Peclet number should be used. For a crust of moderate thickness, the critical permeability is of the order of magnitude of 10(-20) m(2), under which heat conduction is the overwhelming mechanism to transfer heat energy, even though the pore-fluid pressure gradient in the crust is lithostatic. Furthermore, the lower bound analytical solution for the near field of the system demonstrates that the permeable vertical cracks in the middle crust can efficiently transfer heat energy from the lower crust to the upper crust of the Earth. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
[1] We attempt to generate new solutions for the moisture content form of the one-dimensional Richards' [1931] equation using the Lisle [1992] equivalence mapping. This mapping is used as no more general set of transformations exists for mapping the one-dimensional Richards' equation into itself. Starting from a given solution, the mapping has the potential to generate an infinite number of new solutions for a series of nonlinear diffusivity and hydraulic conductivity functions. We first seek new analytical solutions satisfying Richards' equation subject to a constant flux surface boundary condition for a semi-infinite dry soil, starting with the Burgers model. The first iteration produces an existing solution, while subsequent iterations are shown to endlessly reproduce this same solution. Next, we briefly consider the problem of redistribution in a finite-length soil. In this case, Lisle's equivalence mapping is generalized to account for arbitrary initial conditions. As was the case for infiltration, however, it is found that new analytical solutions are not generated using the equivalence mapping, although existing solutions are recovered.
Resumo:
We use the finite element method to solve coupled problems between pore-fluid flow and heat transfer in fluid-saturated porous rocks. In particular, we investigate the effects of both the hot pluton intrusion and topographically driven horizontal flow on the distributions of the pore-flow velocity and temperature in large-scale hydrothermal systems. Since general mineralization patterns are strongly dependent on distributions of both the pore-fluid velocity and temperature fields, the modern mineralization theory has been used to predict the general mineralization patterns in several realistic hydrothermal systems. The related numerical results have demonstrated that: (1) The existence of a hot intrusion can cause an increase in the maximum value of the pore-fluid velocity in the hydrothermal system. (2) The permeability of an intruded pluton is one of the sensitive parameters to control the pore-fluid flow, heat transfer and ore body formation in hydrothermal systems. (3) The maximum value of the pore-fluid velocity increases when the bottom temperature of the hydrothermal system is increased. (4) The topographically driven flow has significant effects on the pore-fluid flow, temperature distribution and precipitation pattern of minerals in hydrothermal systems. (5) The size of the computational domain may have some effects on the pore-fluid flow and heat transfer, indicating that the size of a hydrothermal system may affect the pore-fluid flow and heat transfer within the system. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, rapidly switching magnetic gradient fields that, in extreme cases, may be able to elicit nerve stimulation. This paper presents theoretical investigations into the spatial distribution of induced current inside human tissues caused by pulsed z-gradient fields. A variety of gradient waveforms have been studied. The simulations are based on a new, high-definition, finite-difference time-domain method and a realistic inhomogeneous 10-mm resolution human body model with appropriate tissue parameters. it was found that the eddy current densities are affected not only by the pulse sequences but by many parameters such as the position of the body inside the gradient set, the local biological material properties and the geometry of the body. The discussion contains a comparison of these results with previous results found in the literature. This study and the new methods presented herein will help to further investigate the biological effects caused by the switched gradient fields in a MRI scan. (C) 2002 Wiley Periodicals, Inc.
Resumo:
N,N,N,N-Tetramethylammonium dicyanamide (Me(4)NDCA) has been examined via differential scanning calorimetry (DSC), thermogravimetric analysis, conductivity, single crystal X-ray diffraction and H-1 nuclear magnetic resonance (NMR) analyses, and was found to be highly conductive in the solid state (sigma = 10(-3) S cm(-2) at 420 K) and to also exhibit unusual plastic crystal behaviour. To investigate the correlation between such behaviour and the occurrence of molecular rotations in the crystal, H-1 NMR second moment measurements are compared with calculated values predicted from the crystal structure. While DSC analysis indicates a number of solid-solid transitions at ambient temperatures, subsequent H-1 NMR analysis of the Me4N+ cation shows that a variety of rotational motions become active at low (
Resumo:
Ectotherm antipredator behaviour might be strongly affected both by body temperature and size: when environmental temperatures do not favour maximal locomotor performance, large individuals may confront predators, whereas small animals may flee, simply because they have no other option. However, integration of body size and temperature effects is rarely approached in the study of antipredator behaviour in vertebrate ectotherms. In the present study we investigated whether temperature affects antipredator responses of tegu lizards, Tupinambis merianae, with distinct body sizes, testing the hypothesis that small tegus (juveniles) run away from predators regardless of the environmental temperature, because defensive aggression may not be an effective predator deterrent, whereas adults, which are larger, use aggressive defence at low temperatures, when running performance might be suboptimal. We recorded responses of juvenile (small) and adult (large) tegu lizards to a simulated predatory attack at five environmental temperatures in the laboratory. Most differences between the two size classes were observed at low temperatures: large tegus were more aggressive overall than were small tegus at all temperatures tested, but at lower temperatures, the small lizards often used escape responses whereas the large ones either adopted a defensive posture or remained inactive. These results provide strong evidence that body size and temperature affect the antipredator responses of vertebrate ectotherms. We discuss the complex and intricate network of evolutionary and ecological parameters that are likely to be involved in the evolution of such interactions. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
The thermal characteristics of a colony of Apoica flavissima, an epiponine wasp, were examined. The nest, with a diameter of slightly less than 30 cm, was built on a twig of an orange tree. The temperature of the roof surface fluctuated greatly, ranging between 19.1 and 41.5 degrees C. However, the temperature in the central cell was kept constant at around 27 degrees C throughout a day. Although heavy rain pelted the nest roof in the morning, the central cell maintained temperatures higher than 25 degrees C. On the contrary, after all immature and adult wasps were removed the temperature in the nest fluctuated considerably. The presence of immature individuals and adult wasps densely covering the under surface of the comb seemed to function as an effective insulator. The smaller temperature fluctuation in the central cell than on the roof surface, when the nest was in the empty state, suggests that the thick spongy tissue of the roof made from curled plant leaf hairs serves as an insulator to prevent the conduction of solar heat into the cells and the outward flow of heat generated in cells, especially at night.
Resumo:
The role of temperature and rainfall during seed development in modulating subsequent seed dormancy status was studied for Lolium rigidum Gaud. (annual ryegrass). Climatic parameters relating to geographic origin were compared with annual ryegrass seed dormancy characteristics for seeds collected from 12 sites across the southern Western Australian cropping region. Seed germination was tested soon after collection and periodically during subsequent after-ripening. Temperature in the year of seed development and long-term rainfall patterns showed correlations with aspects of seed dormancy, particularly the proportion of seeds remaining dormant following 5 months of after-ripening. Consequently, for one population the temperature (warm/cool) and water supply (adequate/reduced) during seed development were manipulated to investigate the role of maternal environment in the quantity and dormancy characteristics of seeds produced. Seeds from plants grown at warm temperatures were fewer in number, weighed less, and were less dormant than those from plants grown at cool temperature. Seeds that developed under both cool temperature and reduced moisture conditions lost dormancy faster than seeds from well-watered plants. Seed maturation environment, particularly temperature, can have a significant effect on annual ryegrass seed numbers and seed dormancy characteristics.
Resumo:
Layered Double Hydroxides are a class of materials that can be described as positively charged layers of divalent and trivalent cations in the centre of edge-sharing octahedra. Cholesterol derivatives such as cholic acid are substances that play an important role in the digestion of fat components by the organism. This work presents a study on the intercalation of cholate anions in calcined MgAl-CO(3)-HDL. Isotherm experiments were performed at three different temperatures to evaluate the capacity of anion removal by sorption in the calcined LDH. The plateau was reached in all conditions. Increasing temperature results in decreasing cholate sorption. Characteristic peaks of LDH regenerated with OH(-) anions were observed at lower cholate concentrations. A peak in 2 theta equals to 7.5 degrees and peaks between 15 degrees and 20 degrees are observed. Those peaks are the same as the ones observed in the pure sodium cholate PXRD. At higher cholate concentrations the sorbed solids present PXRD related to an additional layered phase, which is related to intercalation of cholate anions with basal spacing equal to 34.3 angstrom. Thus, the cholate anions are also intercalated with a bilayer molecular arrangement at equilibrium concentrations at the isotherms plateau. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: Xylanases (EC 3.2.1.8) hydrolyze xylan, one of the most abundant plant polysaccharides found in nature, and have many potential applications in biotechnology. Methods: Molecular dynamics simulations were used to investigate the effects of temperature between 298 to 338 K and xylobiose binding on residues located in the substrate-binding cleft of the family 11 xylanase from Bacillus circulans (BcX). Results: In the absence of xylobiose the BcX exhibits temperature dependent movement of the thumb region which adopts an open conformation exposing the active site at the optimum catalytic temperature (328 K). In the presence of substrate, the thumb region restricts access to the active site at all temperatures, and this conformation is maintained by substrate/protein hydrogen bonds involving active site residues, including hydrogen bonds between Tyr69 and the 2` hydroxyl group of the substrate. Substrate access to the active site is regulated by temperature dependent motions that are restricted to the thumb region, and the BcX/substrate complex is stabilized by extensive intermolecular hydrogen bonding with residues in the active site. General significance: These results call for a revision of both the ""hinge-bending"" model for the activity of group 11 xylanases, and the role of Tyr69 in the catalytic mechanism. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We consider a kinetic Ising model which represents a generic agent-based model for various types of socio-economic systems. We study the case of a finite (and not necessarily large) number of agents N as well as the asymptotic case when the number of agents tends to infinity. The main ingredient are individual decision thresholds which are either fixed over time (corresponding to quenched disorder in the Ising model, leading to nonlinear deterministic dynamics which are generically non-ergodic) or which may change randomly over time (corresponding to annealed disorder, leading to ergodic dynamics). We address the question how increasing the strength of annealed disorder relative to quenched disorder drives the system from non-ergodic behavior to ergodicity. Mathematically rigorous analysis provides an explicit and detailed picture for arbitrary realizations of the quenched initial thresholds, revealing an intriguing ""jumpy"" transition from non-ergodicity with many absorbing sets to ergodicity. For large N we find a critical strength of annealed randomness, above which the system becomes asymptotically ergodic. Our theoretical results suggests how to drive a system from an undesired socio-economic equilibrium (e. g. high level of corruption) to a desirable one (low level of corruption).
Resumo:
Magnetic field effects on the conductivity of different types of organic devices: undoped and dye doped aluminium (III) 8-hydroxyquinoline (Alq(3))-based organic light emitting diodes (OLEDs), electron-only Alq(3)-based diodes, and a hole-only N,N`-diphenyl-N,N`-bis(1-naphthyl)1,1`-biphenyl-4,4`-diamine (alpha-NPD)-based diode were studied at room temperature. Only negative magnetoresistance (MR) was observed for the Alq(3)-based devices. The addition of a rubrene dye in Alq(3)-based OLEDs quenches the MR by a factor of 5. The alpha-NPD hole-only device showed only positive MR. Our results are discussed with respect to the actual models for MR in organic semiconductors. Our results are in good agreement with the bipolaron model. (C) 2009 Elsevier B.V. All rights reserved.