956 resultados para Fetal Magnetic Resonance Imaging
Resumo:
Objective: Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF) uses feedback of the patient’s own brain activity to self-regulate brain networks which in turn could lead to a change in behaviour and clinical symptoms. The objective was to determine the effect of neurofeedback and motor training and motor training (MOT) alone on motor and non-motor functions in Parkinson’s disease (PD) in a 10-week small Phase I randomised controlled trial. Methods: 30 patients with PD (Hoehn & Yahr I-III) and no significant comorbidity took part in the trial with random allocation to two groups. Group 1 (NF: 15 patients) received rt-fMRI-NF with motor training. Group 2 (MOT: 15 patients) received motor training alone. The primary outcome measure was the Movement Disorder Society – Unified Parkinson’s Disease Rating Scale-Motor scale (MDS-UPDRS-MS), administered pre- and post-intervention ‘off-medication’. The secondary outcome measures were the ‘on-medication’ MDS-UPDRS, the Parkinson’s disease Questionnaire-39, and quantitative motor assessments after 4 and 10 weeks. Results: Patients in the NF group were able to upregulate activity in the supplementary motor area by using motor imagery. They improved by an average of 4.5 points on the MDS-UPDRS-MS in the ‘off-medication’ state (95% confidence interval: -2.5 to -6.6), whereas the MOT group improved only by 1.9 points (95% confidence interval +3.2 to -6.8). However, the improvement did not differ significantly between the groups. No adverse events were reported in either group. Interpretation: This Phase I study suggests that NF combined with motor training is safe and improves motor symptoms immediately after treatment, but larger trials are needed to explore its superiority over active control conditions. Clinical Trial website : Unique Identifier: NCT01867827 URL: https://clinicaltrials.gov/ct2/show/NCT01867827?term=NCT01867827&rank=1
Resumo:
Purpose of review Recent developments in functional magnetic resonance imaging (fMRI) have catalyzed a new field of translational neuroscience. Using fMRI to monitor the aspects of task-related changes in neural activation or brain connectivity, investigators can offer feedback of simple or complex neural signals/patterns back to the participant on a quasireal-time basis [real-time-fMRI-based neurofeedback (rt-fMRI-NF)]. Here, we introduce some background methodology of the new developments in this field and give a perspective on how they may be used in neurorehabilitation in the future. Recent findings The development of rt-fMRI-NF has been used to promote self-regulation of activity in several brain regions and networks. In addition, and unlike other noninvasive techniques, rt-fMRI-NF can access specific subcortical regions and in principle any region that can be monitored using fMRI including the cerebellum, brainstem and spinal cord. In Parkinson’s disease and stroke, rt-fMRI-NF has been demonstrated to alter neural activity after the self-regulation training was completed and to modify specific behaviours. Summary Future exploitation of rt-fMRI-NF could be used to induce neuroplasticity in brain networks that are involved in certain neurological conditions. However, currently, the use of rt-fMRI-NF in randomized, controlled clinical trials is in its infancy.
Resumo:
Pulmonary hypertension (PH) is a rare but serious condition that causes progressive right ventricular (RV) failure and death. PH may be idiopathic, associated with underlying connective-tissue disease or hypoxic lung disease, and is also increasingly being observed in the setting of heart failure with preserved ejection fraction (HFpEF). The management of PH has been revolutionised by the recent development of new disease-targeted therapies which are beneficial in pulmonary arterial hypertension (PAH), but can be potentially harmful in PH due to left heart disease, so accurate diagnosis and classification of patients is essential. These PAH therapies improve exercise capacity and pulmonary haemodynamics, but their overall effect on the right ventricle remains unclear. Current practice in the UK is to assess treatment response with 6-minute walk test and NYHA functional class, neither of which truly reflects RV function. Cardiac magnetic resonance (CMR) imaging has been established as the gold standard for the evaluation of right ventricular structure and function, but it also allows a non-invasive and accurate study of the left heart. The aims of this thesis were to investigate the use of CMR in the diagnosis of PH, in the assessment of treatment response, and in predicting survival in idiopathic and connective-tissue disease associated PAH. In Chapter 3, a left atrial volume (LAV) threshold of 43 ml/m2 measured with CMR was able to distinguish idiopathic PAH from PH due to HFpEF (sensitivity 97%, specificity 100%). In Chapter 4, disease-targeted PAH therapy resulted in significant improvements in RV and left ventricular ejection fraction (p<0.001 and p=0.0007, respectively), RV stroke volume index (p<0.0001), and left ventricular end-diastolic volume index (p=0.0015). These corresponded to observed improvements in functional class and exercise capacity, although correlation coefficients between Δ 6MWD and Δ RVEF or Δ LVEDV were low. Finally, in Chapter 5, one-year and three-year survival was worse in CTD-PAH (75% and 53%) than in IPAH (83% and 74%), despite similar baseline clinical characteristics, lung function, pulmonary haemodynamics and treatment. Baseline right ventricular stroke volume index was an independent predictor of survival in both conditions. The presence of LV systolic dysfunction was of prognostic significance in CTD-PAH but not IPAH, and a higher LAV was observed in CTD-PAH suggesting a potential contribution from LV diastolic dysfunction in this group.
Resumo:
This study aimed to evaluate the accuracy of magnetic resonance imaging (MRI) in the detection of deep myometrial invasion and cervical extension by endometrial carcinoma. This prospective study included 101 patients with histologically documented endometrial carcinoma, between July 1998 and April 2004. The findings of preoperative pelvic MRI were compared with histological diagnosis. From 101 cases studied by pelvic MRI, 43 were classified as deep myometrial invasion (50% of myometrium), where the pathological evaluation confirmed as having deep myometrial invasion. Cervical extension in the MRI study was found in 19 cases. Pathologic study found cervical extension and/or invasion in 31 cases including all cases identified by MRI. The accuracy, sensitivity and specificity of MRI were 95%, 89%, 100%, detecting deep myometrial invasion and 88%, 61%, 100%, detecting cervical invasion, respectively. The high accuracy achieved makes MRI an adequate method for determine the depth of myometrial and cervical invasion in endometrial carcinoma.
Resumo:
Aims The pubococcygeal line (PCL) is an important reference line for determining measures of pelvic organ support on sagittal-plane magnetic resonance imaging (MRI); however, there is no consensus on where to place the posterior point of the PCL. As coccyx movement produced during pelvic floor muscle (PFM) contractions may affect other measures, optimal placement of the posterior point is important. This study compared two methods for measuring the PCL, with different posterior points, on T2-weighted sagittal MRI to determine the effect of coccygeal movement on measures of pelvic organ support in older women. Methods MRI of the pelvis was performed in the midsagittal plane, at rest and during PFM contractions, on 47 community-dwelling women 60 and over. The first PCL was measured to the tip of the coccyx (PCLtip) and the second to the sacrococcygeal joint (PCLjnt). Four measures of pelvic organ support were made using each PCL as the reference line: urethrovesical junction height, uterovaginal junction height, M-line and levator plate angle. Results During the PFM contraction the PCLtip shortened and lifted (P < 0.001); the PCLjnt did not change (P > 0.05). The changes in the four measures of pelvic organ support were smaller when measured relative to the PCLtip as compared to those to the PCLjnt (P < 0.001). Conclusions Coccyx movement affected the length and position of the PCLtip, which resulted in underestimates of the pelvic-organ lift produced by the PFM contraction. Therefore, we recommend that the PCL be measured to the sacrococcygeal joint and not to the tip of the coccyx
Resumo:
Introduction Cerebral misery perfusion represents a failure of cerebral autoregulation. It is animportant differential diagnosis in post-stroke patients presenting with collapses in the presence of haemodynamically significant cerebrovascular stenosis. This is particularly the case when cortical or internal watershed infarcts are present. When this condition occurs, further investigation should be done immediately. Case presentation A 50-year-old Caucasian man presented with a stroke secondary to complete occlusion of his left internal carotid artery. He went on to suffer recurrent seizures. Neuroimaging demonstrated numerous new watershed-territory cerebral infarcts. No source of arterial thromboembolism was demonstrable. Hypercapnic blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging was used to measure his cerebrovascular reserve capacity. The findings were suggestive of cerebral misery perfusion. Conclusions Blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging allows the inference of cerebral misery perfusion. This procedure is cheaper and more readily available than positron emission tomography imaging, which is the current gold standard diagnostic test. The most evaluated treatment for cerebral misery perfusion is extracranial-intracranial bypass. Although previous trials of this have been unfavourable, the results of new studies involving extracranial-intracranial bypass in high-risk patients identified during cerebral perfusion imaging are awaited. Cerebral misery perfusion is an important and under-recognized condition in which emerging imaging and treatment modalities present the possibility of practical and evidence-based management in the near future. Physicians should thus be aware of this disorder and of recent developments in diagnostic tests that allow its detection.
Resumo:
A prospective randomised controlled clinical trial of treatment decisions informed by invasive functional testing of coronary artery disease severity compared with standard angiography-guided management was implemented in 350 patients with a recent non-ST elevation myocardial infarction (NSTEMI) admitted to 6 hospitals in the National Health Service. The main aims of this study were to examine the utility of both invasive fractional flow reserve (FFR) and non-invasive cardiac magnetic resonance imaging (MRI) amongst patients with a recent diagnosis of NSTEMI. In summary, the findings of this thesis are: (1) the use of FFR combined with intravenous adenosine was feasible and safe amongst patients with NSTEMI and has clinical utility; (2) there was discordance between the visual, angiographic estimation of lesion significance and FFR; (3). The use of FFR led to changes in treatment strategy and an increase in prescription of medical therapy in the short term compared with an angiographically guided strategy; (4) in the incidence of major adverse cardiac events (MACE) at 12 months follow up was similar in the two groups. Cardiac MRI was used in a subset of patients enrolled in two hospitals in the West of Scotland. T1 and T2 mapping methods were used to delineate territories of acute myocardial injury. T1 and T2 mapping were superior when compared with conventional T2-weighted dark blood imaging for estimation of the ischaemic area-at-risk (AAR) with less artifact in NSTEMI. There was poor correlation between the angiographic AAR and MRI methods of AAR estimation in patients with NSTEMI. FFR had a high accuracy at predicting inducible perfusion defects demonstrated on stress perfusion MRI. This thesis describes the largest randomized trial published to date specifically looking at the clinical utility of FFR in the NSTEMI population. We have provided evidence of the diagnostic and clinical utility of FFR in this group of patients and provide evidence to inform larger studies. This thesis also describes the largest ever MRI cohort, including with myocardial stress perfusion assessments, specifically looking at the NSTEMI population. We have demonstrated the diagnostic accuracy of FFR to predict reversible ischaemia as referenced to a non-invasive gold standard with MRI. This thesis has also shown the futility of using dark blood oedema imaging amongst all comer NSTEMI patients when compared to novel T1 and T2 mapping methods.
Resumo:
The introduction of molecular criteria into the classification of diffuse gliomas has added interesting practical implications to glioma management. This has created a new clinical need for correlating imaging characteristics with glioma genotypes, also known as radiogenomics or imaging genomics. Whilst many studies have primarily focused on the use of advanced magnetic resonance imaging (MRI) techniques for radiogenomics purposes, conventional MRI sequences still remain the reference point in the study and characterization of brain tumours. Moreover, a different approach may rely on diffusion-weighted imaging (DWI) usage, which is considered a “conventional” sequence in line with recently published directions on glioma imaging. In a non-invasive way, it can provide direct insight into the microscopic physical properties of tissues. Considering that Isocitrate-Dehydrogenase gene mutations may reflect alterations in metabolism, cellularity, and angiogenesis, which may manifest characteristic features on an MRI, the identification of specific MRI biomarkers could be of great interest in managing patients with brain gliomas. My study aimed to evaluate the presence of specific MRI-derived biomarkers of IDH molecular status through conventional MRI and DWI sequences.
Resumo:
Motivation. The study of human brain development in itsearly stage is today possible thanks to in vivo fetalmagnetic resonance imaging (MRI) techniques. Aquantitative analysis of fetal cortical surfacerepresents a new approach which can be used as a markerof the cerebral maturation (as gyration) and also forstudying central nervous system pathologies [1]. However,this quantitative approach is a major challenge forseveral reasons. First, movement of the fetus inside theamniotic cavity requires very fast MRI sequences tominimize motion artifacts, resulting in a poor spatialresolution and/or lower SNR. Second, due to the ongoingmyelination and cortical maturation, the appearance ofthe developing brain differs very much from thehomogenous tissue types found in adults. Third, due tolow resolution, fetal MR images considerably suffer ofpartial volume (PV) effect, sometimes in large areas.Today extensive efforts are made to deal with thereconstruction of high resolution 3D fetal volumes[2,3,4] to cope with intra-volume motion and low SNR.However, few studies exist related to the automatedsegmentation of MR fetal imaging. [5] and [6] work on thesegmentation of specific areas of the fetal brain such asposterior fossa, brainstem or germinal matrix. Firstattempt for automated brain tissue segmentation has beenpresented in [7] and in our previous work [8]. Bothmethods apply the Expectation-Maximization Markov RandomField (EM-MRF) framework but contrary to [7] we do notneed from any anatomical atlas prior. Data set &Methods. Prenatal MR imaging was performed with a 1-Tsystem (GE Medical Systems, Milwaukee) using single shotfast spin echo (ssFSE) sequences (TR 7000 ms, TE 180 ms,FOV 40 x 40 cm, slice thickness 5.4mm, in plane spatialresolution 1.09mm). Each fetus has 6 axial volumes(around 15 slices per volume), each of them acquired inabout 1 min. Each volume is shifted by 1 mm with respectto the previous one. Gestational age (GA) ranges from 29to 32 weeks. Mother is under sedation. Each volume ismanually segmented to extract fetal brain fromsurrounding maternal tissues. Then, in-homogeneityintensity correction is performed using [9] and linearintensity normalization is performed to have intensityvalues that range from 0 to 255. Note that due tointra-tissue variability of developing brain someintensity variability still remains. For each fetus, ahigh spatial resolution image of isotropic voxel size of1.09 mm is created applying [2] and using B-splines forthe scattered data interpolation [10] (see Fig. 1). Then,basal ganglia (BS) segmentation is performed on thissuper reconstructed volume. Active contour framework witha Level Set (LS) implementation is used. Our LS follows aslightly different formulation from well-known Chan-Vese[11] formulation. In our case, the LS evolves forcing themean of the inside of the curve to be the mean intensityof basal ganglia. Moreover, we add local spatial priorthrough a probabilistic map created by fitting anellipsoid onto the basal ganglia region. Some userinteraction is needed to set the mean intensity of BG(green dots in Fig. 2) and the initial fitting points forthe probabilistic prior map (blue points in Fig. 2). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed as described in [8]. Results.The case study presented here has 29 weeks of GA. Thehigh resolution reconstructed volume is presented in Fig.1. The steps of BG segmentation are shown in Fig. 2.Overlap in comparison with manual segmentation isquantified by the Dice similarity index (DSI) equal to0.829 (values above 0.7 are considered a very goodagreement). Such BG segmentation has been applied on 3other subjects ranging for 29 to 32 GA and the DSI hasbeen of 0.856, 0.794 and 0.785. Our segmentation of theinner (red and blue contours) and outer cortical surface(green contour) is presented in Fig. 3. Finally, torefine the results we include our WM segmentation in theFreesurfer software [12] and some manual corrections toobtain Fig.4. Discussion. Precise cortical surfaceextraction of fetal brain is needed for quantitativestudies of early human brain development. Our workcombines the well known statistical classificationframework with the active contour segmentation forcentral gray mater extraction. A main advantage of thepresented procedure for fetal brain surface extraction isthat we do not include any spatial prior coming fromanatomical atlases. The results presented here arepreliminary but promising. Our efforts are now in testingsuch approach on a wider range of gestational ages thatwe will include in the final version of this work andstudying as well its generalization to different scannersand different type of MRI sequences. References. [1]Guibaud, Prenatal Diagnosis 29(4) (2009). [2] Rousseau,Acad. Rad. 13(9), 2006, [3] Jiang, IEEE TMI 2007. [4]Warfield IADB, MICCAI 2009. [5] Claude, IEEE Trans. Bio.Eng. 51(4) (2004). [6] Habas, MICCAI (Pt. 1) 2008. [7]Bertelsen, ISMRM 2009 [8] Bach Cuadra, IADB, MICCAI 2009.[9] Styner, IEEE TMI 19(39 (2000). [10] Lee, IEEE Trans.Visual. And Comp. Graph. 3(3), 1997, [11] Chan, IEEETrans. Img. Proc, 10(2), 2001 [12] Freesurfer,http://surfer.nmr.mgh.harvard.edu.
Resumo:
In type I diabetes mellitus, islet transplantation provides a moment-to-moment fine regulation of insulin. Success rates vary widely, however, necessitating suitable methods to monitor islet delivery, engraftment and survival. Here magnetic resonance-trackable magnetocapsules have been used simultaneously to immunoprotect pancreatic beta-cells and to monitor, non-invasively in real-time, hepatic delivery and engraftment by magnetic resonance imaging (MRI). Magnetocapsules were detected as single capsules with an altered magnetic resonance appearance on capsule rupture. Magnetocapsules were functional in vivo because mouse beta-cells restored normal glycemia in streptozotocin-induced diabetic mice and human islets induced sustained C-peptide levels in swine. In this large-animal model, magnetocapsules could be precisely targeted for infusion by using magnetic resonance fluoroscopy, whereas MRI facilitated monitoring of liver engraftment over time. These findings are directly applicable to ongoing improvements in islet cell transplantation for human diabetes, particularly because our magnetocapsules comprise clinically applicable materials.
Resumo:
RATIONALE AND OBJECTIVES: Recent developments of magnetic resonance imaging enabled free-breathing coronary MRA (cMRA) using steady-state-free-precession (SSFP) for endogenous contrast. The purpose of this study was a systematic comparison of SSFP cMRA with standard T2-prepared gradient-echo and spiral cMRA. METHODS: Navigator-gated free-breathing T2-prepared SSFP-, T2-prepared gradient-echo- and T2-prepared spiral cMRA was performed in 18 healthy swine (45-68 kg body-weight). Image quality was investigated subjectively and signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and vessel sharpness were compared. RESULTS: SSFP cMRA allowed for high quality cMRA during free breathing with substantial improvements in SNR, CNR and vessel sharpness when compared with standard T2-prepared gradient-echo imaging. Spiral imaging demonstrated the highest SNR while image quality score and vessel definition was best for SSFP imaging. CONCLUSION: Navigator-gated free-breathing T2-prepared SSFP cMRA is a promising new imaging approach for high signal and high contrast imaging of the coronary arteries with improved vessel border definition.
Resumo:
AIMS: Although the coronary artery vessel wall can be imaged non-invasively using magnetic resonance imaging (MRI), the in vivo reproducibility of wall thickness measures has not been previously investigated. Using a refined magnetization preparation scheme, we sought to assess the reproducibility of three-dimensional (3D) free-breathing black-blood coronary MRI in vivo. METHODS AND RESULTS: MRI vessel wall scans parallel to the right coronary artery (RCA) were obtained in 18 healthy individuals (age range 25-43, six women), with no known history of coronary artery disease, using a 3D dual-inversion navigator-gated black-blood spiral imaging sequence. Vessel wall scans were repeated 1 month later in eight subjects. The visible vessel wall segment and the wall thickness were quantitatively assessed using a semi-automatic tool and the intra-observer, inter-observer, and inter-scan reproducibilities were determined. The average imaged length of the RCA vessel wall was 44.5+/-7 mm. The average wall thickness was 1.6+/-0.2 mm. There was a highly significant intra-observer (r=0.97), inter-observer (r=0.94), and inter-scan (r=0.90) correlation for wall thickness (all P<0.001). There was also a significant agreement for intra-observer, inter-observer, and inter-scan measurements on Bland-Altman analysis. The intra-class correlation coefficients for intra-observer (r=0.97), inter-observer (r=0.92), and inter-scan (r=0.86) analyses were also excellent. CONCLUSION: The use of black-blood free-breathing 3D MRI in conjunction with semi-automated analysis software allows for reproducible measurements of right coronary arterial vessel-wall thickness. This technique may be well-suited for non-invasive longitudinal studies of coronary atherosclerosis.
Resumo:
Non-invasive visualization of the coronary arteries represents a major challenge in modern cardiology, but this goal may be achieved in the near future by MR angiography. Possible applications are non-invasive diagnosis of coronary artery disease, and follow-up examinations for therapy control after PTCA, in order to detect restenosis at an early stage. A multiple slice technique (2 mm slice thickness, with a spatial resolution of 1 x 1 mm, Philips Gyroscan ACS-II, 1.5 Tesla) was used. Ten volunteers were imaged and 10 patients with coronary artery disease were examined before and after PTCA. MR measurements were validated by quantitative coronary angiography. The diameters of the proximal coronary arteries as measured by both methods were compared, and a good correlation was found (r = 0.76). Thus, it is concluded that non-invasive visualization of the coronary arteries is possible before and after PTCA and allows to determine potential restenoses. However, patient cooperation is essential for good image quality. Moreover, limited spatial image resolution and breathing artifacts restrict MR coronary angiography today to be used as a routine diagnostic tool for the diagnosis of coronary artery disease.