860 resultados para Feeding plasticity
Resumo:
Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term that captures the covariance of neuronal firing and reward and a second term that presents the influence of unsupervised learning. The unsupervised term, which is, in general, detrimental for reward-based learning, can be suppressed if the neuromodulatory signal encodes the difference between the reward and the expected reward-but only if the expected reward is calculated for each task and stimulus separately. If several tasks are to be learned simultaneously, the nervous system needs an internal critic that is able to predict the expected reward for arbitrary stimuli. We show that, with a critic, reward-modulated spike-timing-dependent plasticity is capable of learning motor trajectories with a temporal resolution of tens of milliseconds. The relation to temporal difference learning, the relevance of block-based learning paradigms, and the limitations of learning with a critic are discussed.
Resumo:
Our nervous system can efficiently recognize objects in spite of changes in contextual variables such as perspective or lighting conditions. Several lines of research have proposed that this ability for invariant recognition is learned by exploiting the fact that object identities typically vary more slowly in time than contextual variables or noise. Here, we study the question of how this "temporal stability" or "slowness" approach can be implemented within the limits of biologically realistic spike-based learning rules. We first show that slow feature analysis, an algorithm that is based on slowness, can be implemented in linear continuous model neurons by means of a modified Hebbian learning rule. This approach provides a link to the trace rule, which is another implementation of slowness learning. Then, we show analytically that for linear Poisson neurons, slowness learning can be implemented by spike-timing-dependent plasticity (STDP) with a specific learning window. By studying the learning dynamics of STDP, we show that for functional interpretations of STDP, it is not the learning window alone that is relevant but rather the convolution of the learning window with the postsynaptic potential. We then derive STDP learning windows that implement slow feature analysis and the "trace rule." The resulting learning windows are compatible with physiological data both in shape and timescale. Moreover, our analysis shows that the learning window can be split into two functionally different components that are sensitive to reversible and irreversible aspects of the input statistics, respectively. The theory indicates that irreversible input statistics are not in favor of stable weight distributions but may generate oscillatory weight dynamics. Our analysis offers a novel interpretation for the functional role of STDP in physiological neurons.
Resumo:
A small-strain two-dimensional discrete dislocation plasticity (DDP) framework is developed wherein dislocation motion is caused by climb-assisted glide. The climb motion of the dislocations is assumed to be governed by a drag-type relation similar to the glide-only motion of dislocations: such a relation is valid when vacancy kinetics is either diffusion limited or sink limited. The DDP framework is employed to predict the effect of dislocation climb on the uniaxial tensile and pure bending response of single crystals. Under uniaxial tensile loading conditions, the ability of dislocations to bypass obstacles by climb results in a reduced dislocation density over a wide range of specimen sizes in the climb-assisted glide case compared to when dislocation motion is only by glide. A consequence is that, at least in a single slip situation, size effects due to dislocation starvation are reduced. By contrast, under pure bending loading conditions, the dislocation density is unaffected by dislocation climb as geometrically necessary dislocations (GNDs) dominate. However, climb enables the dislocations to arrange themselves into lower energy configurations which significantly reduces the predicted bending size effect as well as the amount of reverse plasticity observed during unloading. The results indicate that the intrinsic plasticity material length scale associated with GNDs is strongly affected by thermally activated processes and will be a function of temperature. © 2013 IOP Publishing Ltd.
Resumo:
While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical □ndings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.
Resumo:
A series of laboratory-scale T-bar penetrometer tests have been conducted on a clay bed virgin consolidated from reconstituted high plasticity marine clay. This investigation was mainly concerned with the effects on the penetration resistance of rate of penetration and the presence of free water on the surface of the clay bed. The rate of penetration varied between 0.005mm/s and 50mm/s. The results showed that the nature of soil resistance was 'undrained' over the range of speeds studied, and the resistance showed a marked viscous rate effect. The virgin consolidated clay bed exhibited an increase in penetration resistance by up to 35% for a factor 10 increase in rate of penetration much larger than values previously reported for kaolin. The presence of water on the surface of clay bed had a profound impact on penetration resistance, particularly on the remoulded strength obtained by taking the T-bar through successive penetration and extraction cycles. This was true even when the remoulding cycles were conducted without the T-bar breaking through the clay surface.
Resumo:
A small strain two-dimensional discrete dislocation plasticity framework coupled to vacancy diffusion is developed wherein the motion of edge dislocations is by a combination of glide and climb. The dislocations are modelled as line defects in a linear elastic medium and the mechanical boundary value problem is solved by the superposition of the infinite medium elastic fields of the dislocations and a complimentary non-singular solution that enforces the boundary conditions. Similarly, the climbing dislocations are modelled as line sources/sinks of vacancies and the vacancy diffusion boundary value problem is also solved by a superposition of the fields of the line sources/sinks in an infinite medium and a complementary non-singular solution that enforces the boundary conditions. The vacancy concentration field along with the stress field provides the climb rate of the dislocations. Other short-range interactions of the dislocations are incorporated via a set of constitutive rules. We first employ this formulation to investigate the climb of a single edge dislocation in an infinite medium and illustrate the existence of diffusion-limited and sink-limited climb regimes. Next, results are presented for the pure bending and uniaxial tension of single crystals oriented for single slip. These calculations show that plasticity size effects are reduced when dislocation climb is permitted. Finally, we contrast predictions of this coupled framework with an ad hoc model in which dislocation climb is modelled by a drag-type relation based on a quasi steady-state solution. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and microdevices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either 'microhard' (impenetrable to dislocations) or 'microfree' (an infinite dislocation sink). © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The planktivorous filter-feeding silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) are the attractive candidates for bio-control of plankton communities to eliminate odorous populations of cyanobacteria. However, few studies focused on the health of such fishes in natural water body with vigorous toxic blooms. Blood parameters are useful and sensitive for diagnosis of diseases and monitoring of the physiological status of fish exposed to toxicants. To evaluate the impact of toxic cyanobacterial blooms on the planktivorous fish, 12 serum chemistry variables were investigated in silver carp and bighead carp for 9 months, in a large net cage in Meiliang Bay, a hypereutrophic region of Lake Taihu. The results confirmed adverse effects of cyanobacterial blooms on two phytoplanktivorous fish, which mainly characterized with potential toxicogenomic effects and metabolism disorders in liver, and kidney dysfunction. In addition, cholestasis was intensively implied by distinct elevation of all four related biomarkers (ALP, GGT, DBIL, TBIL) in bighead carp. The combination of LDH, AST activities and DBIL, URIC contents for silver carp, and the combination of ALT. ALP activities and TBIL, DBIL. URIC concentrations for bighead carps were found to most strongly indicate toxic effects from cyanobacterial blooms in such fishes by a multivariate discriminant analysis. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A two-week trial was conducted to study the effect of feeding rates on heat shock protein levels in larval white sturgeon. The larvae (30 day post hatch, 230 mg initial body weight) were fed a commercial feed (12.6% moisture, 49.5% crude protein. 20.7% Crude fat, and 8.6% ash) at 5, 15. or 25% body weight per clay (BW d(-1)). Liver heat shock proteins (Hsp) were measured before and after the larvae were subjected to a heat shock from 18 to 26 degrees C at 1 degrees C/15 min and maintained at 26 degrees C for 4 h thereafter. Before heat shock, larvae fed 5% BW d(-1) had significantly (P<0.05) lower final body weight, RNA/DNA ratio, whole body lipid and protein content, and Hsp60 and Hsp70 levels but higher protein efficiency ratio, and whole body moisture content than larvae fed the two higher feeding rates. Heat shock significantly induced Hsp60 and Hsp70 levels in the liver of all fish but they were lower in larvae fed the 5% than those fed 15 and 25% BW d(-1). Hsp70 level increased much more than Hsp60 after the heat shock Suggesting that Hsp70 is a more sensitive biomarker under our experimental conditions. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Many experimental studies have documented the impact of microcystins (MC) on fish based on either intraperitoneal injection, or oral gavaging via the diet, but few experiments were conducted by MC exposure through natural food uptake in lakes. In this study, the phytoplanktivorous silver carp were stocked in a large pen set in Meiliang Bay of Taihu Lake where toxic Microcystis blooms occurred in the warm seasons. Fish samples were collected monthly and MC concentrations in liver and kidney of the fish were determined by LC-MS. The maximum MC concentrations in liver and kidney were present in July when damages in ultrastructures of the liver and kidney were revealed by electron microscope. In comparison with previous studies on common carp, silver carp showed less damage and presence of lysosome proliferation in liver and kidney. Silver carp might eliminate or lessen cell damage caused by MC through lysosome activation. Recovery in the ultrastructures of liver and kidney after Microcystis blooms was companied with a significant decrease or even disappearance of MC. Catalase and glutathione S-transferase in liver and kidney of silver carp during Microcystis blooms were significantly higher than before and after Microcystis blooms. The high glutathione pool in liver and kidney of silver carp suggests their high resistance to MC exposure. The efficient antioxidant defence may be an important mechanism of phytoplanktivorous fish like silver carp to counteract toxic Microcystis blooms. (C) 2007 Published by Elsevier Ltd.
Resumo:
Development of embryos and larvae in Ancherythroculter nigrocauda Yih et Woo (1964) and effects of delayed first feeding on larvae were observed after artificial fertilization. The fertilized eggs were incubated at an average temperature of 26.5 degrees C (range: 25.7-27) and the larvae reared at temperatures ranging from 21.8 to 28 degrees C. First cleavage was at 50 min, epiboly began at 7 h 5 min, heartbeat reached 72 per min at 24 h 40 min and hatching occurred at 43 h 15 min after insemination. Mean total length of newly hatched larvae was 4.04 +/- 0.03 mm (n = 15). A one-chambered gas bladder was observed at 70 h 50 min, two chambers occurred at 15 days, and scales appeared approximately 30 days after hatching. Larvae began to feed exogenously at day 4 post-hatch at an average temperature of 24 degrees C. Food deprivation resulted in a progressive atrophy of skeletal muscle fibres, deterioration of the larval digestive system and cessation of organ differentiation. Larval growth under food deprivation was significantly affected by the time of first exogenous feeding. Starved larvae began to shrink, with negative growth from day 6 post-hatch. The point of no return (PNR) was reached at day 11 after hatching. Mortality of starved larvae increased sharply from day 12 after hatching.