858 resultados para Feature Descriptors
Resumo:
Successful classification, information retrieval and image analysis tools are intimately related with the quality of the features employed in the process. Pixel intensities, color, texture and shape are, generally, the basis from which most of the features are Computed and used in such fields. This papers presents a novel shape-based feature extraction approach where an image is decomposed into multiple contours, and further characterized by Fourier descriptors. Unlike traditional approaches we make use of topological knowledge to generate well-defined closed contours, which are efficient signatures for image retrieval. The method has been evaluated in the CBIR context and image analysis. The results have shown that the multi-contour decomposition, as opposed to a single shape information, introduced a significant improvement in the discrimination power. (c) 2008 Elsevier B.V. All rights reserved,
Resumo:
We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.
Resumo:
This paper proposes a parallel hardware architecture for image feature detection based on the Scale Invariant Feature Transform algorithm and applied to the Simultaneous Localization And Mapping problem. The work also proposes specific hardware optimizations considered fundamental to embed such a robotic control system on-a-chip. The proposed architecture is completely stand-alone; it reads the input data directly from a CMOS image sensor and provides the results via a field-programmable gate array coupled to an embedded processor. The results may either be used directly in an on-chip application or accessed through an Ethernet connection. The system is able to detect features up to 30 frames per second (320 x 240 pixels) and has accuracy similar to a PC-based implementation. The achieved system performance is at least one order of magnitude better than a PC-based solution, a result achieved by investigating the impact of several hardware-orientated optimizations oil performance, area and accuracy.
Resumo:
This work presents a novel approach in order to increase the recognition power of Multiscale Fractal Dimension (MFD) techniques, when applied to image classification. The proposal uses Functional Data Analysis (FDA) with the aim of enhancing the MFD technique precision achieving a more representative descriptors vector, capable of recognizing and characterizing more precisely objects in an image. FDA is applied to signatures extracted by using the Bouligand-Minkowsky MFD technique in the generation of a descriptors vector from them. For the evaluation of the obtained improvement, an experiment using two datasets of objects was carried out. A dataset was used of characters shapes (26 characters of the Latin alphabet) carrying different levels of controlled noise and a dataset of fish images contours. A comparison with the use of the well-known methods of Fourier and wavelets descriptors was performed with the aim of verifying the performance of FDA method. The descriptor vectors were submitted to Linear Discriminant Analysis (LDA) classification method and we compared the correctness rate in the classification process among the descriptors methods. The results demonstrate that FDA overcomes the literature methods (Fourier and wavelets) in the processing of information extracted from the MFD signature. In this way, the proposed method can be considered as an interesting choice for pattern recognition and image classification using fractal analysis.
Resumo:
This paper presents the formulation of a combinatorial optimization problem with the following characteristics: (i) the search space is the power set of a finite set structured as a Boolean lattice; (ii) the cost function forms a U-shaped curve when applied to any lattice chain. This formulation applies for feature selection in the context of pattern recognition. The known approaches for this problem are branch-and-bound algorithms and heuristics that explore partially the search space. Branch-and-bound algorithms are equivalent to the full search, while heuristics are not. This paper presents a branch-and-bound algorithm that differs from the others known by exploring the lattice structure and the U-shaped chain curves of the search space. The main contribution of this paper is the architecture of this algorithm that is based on the representation and exploration of the search space by new lattice properties proven here. Several experiments, with well known public data, indicate the superiority of the proposed method to the sequential floating forward selection (SFFS), which is a popular heuristic that gives good results in very short computational time. In all experiments, the proposed method got better or equal results in similar or even smaller computational time. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Some sesquiterpene lactones (SLs) are the active compounds of a great number of traditionally medicinal plants from the Asteraceae family and possess considerable cytotoxic activity. Several studies in vitro have shown the inhibitory activity against cells derived from human carcinoma of the nasopharynx (KB). Chemical studies showed that the cytotoxic activity is due to the reaction of alpha,beta-unsaturated carbonyl structures of the SLs with thiols, such as cysteine. These studies support the view that SLs inhibit tumour growth by selective alkylation of growth-regulatory biological macromolecules, such as key enzymes, which control cell division, thereby inhibiting a variety of cellular functions, which directs the cells into apoptosis. In this study we investigated a set of 55 different sesquiterpene lactones, represented by 5 skeletons (22 germacranolides, 6 elemanolides, 2 eudesmanolides, 16 guaianolides and nor-derivatives and 9 pseudoguaianolides), in respect to their cytotoxic properties. The experimental results and 3D molecular descriptors were submitted to Kohonen self-organizing map (SOM) to classify (training set) and predict (test set) the cytotoxic activity. From the obtained results, it was concluded that only the geometrical descriptors showed satisfactory values. The Kohonen map obtained after training set using 25 geometrical descriptors shows a very significant match, mainly among the inactive compounds (similar to 84%). Analyzing both groups, the percentage seen is high (83%). The test set shows the highest match, where 89% of the substances had their cytotoxic activity correctly predicted. From these results, important properties for the inhibition potency are discussed for the whole dataset and for subsets of the different structural skeletons. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Various significant anti-HCV and cytotoxic sesquiterpene lactones (SLs) have been characterized. In this work, the chemometric tool Principal Component Analysis (PCA) was applied to two sets of SLs and the variance of the biological activity was explored. The first principal component accounts for as much of the variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as possible. The calculations were performed using VolSurf program. For anti-HCV activity, PC1 (First Principal Component) explained 30.3% and PC2 (Second Principal Component) explained 26.5% of matrix total variance, while for cytotoxic activity, PC1 explained 30.9% and PC2 explained 15.6% of the total variance. The formalism employed generated good exploratory and predictive results and we identified some structural features, for both sets, important to the suitable biological activity and pharmacokinetic profile.
Resumo:
Condition monitoring of wooden railway sleepers applications are generallycarried out by visual inspection and if necessary some impact acoustic examination iscarried out intuitively by skilled personnel. In this work, a pattern recognition solutionhas been proposed to automate the process for the achievement of robust results. Thestudy presents a comparison of several pattern recognition techniques together withvarious nonstationary feature extraction techniques for classification of impactacoustic emissions. Pattern classifiers such as multilayer perceptron, learning cectorquantization and gaussian mixture models, are combined with nonstationary featureextraction techniques such as Short Time Fourier Transform, Continuous WaveletTransform, Discrete Wavelet Transform and Wigner-Ville Distribution. Due to thepresence of several different feature extraction and classification technqies, datafusion has been investigated. Data fusion in the current case has mainly beeninvestigated on two levels, feature level and classifier level respectively. Fusion at thefeature level demonstrated best results with an overall accuracy of 82% whencompared to the human operator.
Resumo:
The objective of this thesis work, is to propose an algorithm to detect the faces in a digital image with complex background. A lot of work has already been done in the area of face detection, but drawback of some face detection algorithms is the lack of ability to detect faces with closed eyes and open mouth. Thus facial features form an important basis for detection. The current thesis work focuses on detection of faces based on facial objects. The procedure is composed of three different phases: segmentation phase, filtering phase and localization phase. In segmentation phase, the algorithm utilizes color segmentation to isolate human skin color based on its chrominance properties. In filtering phase, Minkowski addition based object removal (Morphological operations) has been used to remove the non-skin regions. In the last phase, Image Processing and Computer Vision methods have been used to find the existence of facial components in the skin regions.This method is effective on detecting a face region with closed eyes, open mouth and a half profile face. The experiment’s results demonstrated that the detection accuracy is around 85.4% and the detection speed is faster when compared to neural network method and other techniques.
Resumo:
Parkinson’s disease is a clinical syndrome manifesting with slowness and instability. As it is a progressive disease with varying symptoms, repeated assessments are necessary to determine the outcome of treatment changes in the patient. In the recent past, a computer-based method was developed to rate impairment in spiral drawings. The downside of this method is that it cannot separate the bradykinetic and dyskinetic spiral drawings. This work intends to construct the computer method which can overcome this weakness by using the Hilbert-Huang Transform (HHT) of tangential velocity. The work is done under supervised learning, so a target class is used which is acquired from a neurologist using a web interface. After reducing the dimension of HHT features by using PCA, classification is performed. C4.5 classifier is used to perform the classification. Results of the classification are close to random guessing which shows that the computer method is unsuccessful in assessing the cause of drawing impairment in spirals when evaluated against human ratings. One promising reason is that there is no difference between the two classes of spiral drawings. Displaying patients self ratings along with the spirals in the web application is another possible reason for this, as the neurologist may have relied too much on this in his own ratings.
Resumo:
The purpose of this paper is to analyze the performance of the Histograms of Oriented Gradients (HOG) as descriptors for traffic signs recognition. The test dataset consists of speed limit traffic signs because of their high inter-class similarities. HOG features of speed limit signs, which were extracted from different traffic scenes, were computed and a Gentle AdaBoost classifier was invoked to evaluate the different features. The performance of HOG was tested with a dataset consisting of 1727 Swedish speed signs images. Different numbers of HOG features per descriptor, ranging from 36 features up 396 features, were computed for each traffic sign in the benchmark testing. The results show that HOG features perform high classification rate as the Gentle AdaBoost classification rate was 99.42%, and they are suitable to real time traffic sign recognition. However, it is found that changing the number of orientation bins has insignificant effect on the classification rate. In addition to this, HOG descriptors are not robust with respect to sign orientation.
Resumo:
It is well known that cointegration between the level of two variables (labeled Yt and yt in this paper) is a necessary condition to assess the empirical validity of a present-value model (PV and PVM, respectively, hereafter) linking them. The work on cointegration has been so prevalent that it is often overlooked that another necessary condition for the PVM to hold is that the forecast error entailed by the model is orthogonal to the past. The basis of this result is the use of rational expectations in forecasting future values of variables in the PVM. If this condition fails, the present-value equation will not be valid, since it will contain an additional term capturing the (non-zero) conditional expected value of future error terms. Our article has a few novel contributions, but two stand out. First, in testing for PVMs, we advise to split the restrictions implied by PV relationships into orthogonality conditions (or reduced rank restrictions) before additional tests on the value of parameters. We show that PV relationships entail a weak-form common feature relationship as in Hecq, Palm, and Urbain (2006) and in Athanasopoulos, Guillén, Issler and Vahid (2011) and also a polynomial serial-correlation common feature relationship as in Cubadda and Hecq (2001), which represent restrictions on dynamic models which allow several tests for the existence of PV relationships to be used. Because these relationships occur mostly with nancial data, we propose tests based on generalized method of moment (GMM) estimates, where it is straightforward to propose robust tests in the presence of heteroskedasticity. We also propose a robust Wald test developed to investigate the presence of reduced rank models. Their performance is evaluated in a Monte-Carlo exercise. Second, in the context of asset pricing, we propose applying a permanent-transitory (PT) decomposition based on Beveridge and Nelson (1981), which focus on extracting the long-run component of asset prices, a key concept in modern nancial theory as discussed in Alvarez and Jermann (2005), Hansen and Scheinkman (2009), and Nieuwerburgh, Lustig, Verdelhan (2010). Here again we can exploit the results developed in the common cycle literature to easily extract permament and transitory components under both long and also short-run restrictions. The techniques discussed herein are applied to long span annual data on long- and short-term interest rates and on price and dividend for the U.S. economy. In both applications we do not reject the existence of a common cyclical feature vector linking these two series. Extracting the long-run component shows the usefulness of our approach and highlights the presence of asset-pricing bubbles.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Most face recognition approaches require a prior training where a given distribution of faces is assumed to further predict the identity of test faces. Such an approach may experience difficulty in identifying faces belonging to distributions different from the one provided during the training. A face recognition technique that performs well regardless of training is, therefore, interesting to consider as a basis of more sophisticated methods. In this work, the Census Transform is applied to describe the faces. Based on a scanning window which extracts local histograms of Census Features, we present a method that directly matches face samples. With this simple technique, 97.2% of the faces in the FERET fa/fb test were correctly recognized. Despite being an easy test set, we have found no other approaches in literature regarding straight comparisons of faces with such a performance. Also, a window for further improvement is presented. Among other techniques, we demonstrate how the use of SVMs over the Census Histogram representation can increase the recognition performance.