994 resultados para Fadiga óssea
Resumo:
Lymphoma represents the most prevalent hematopoietic malignancy in small animal medicine. It is highly responsible to chemotherapy and therefore several protocols are used as therapeutic tools. For that reason, the bone marrow transplantation, enshrined in human medicine through initial trial in canine patients, has increasingly become the focus of studies in order to make it a reality also in veterinary medicine. First, the treatment with the chosen chemotherapy protocol is made. As complete remission of lymphoma is observed, it must be initiated the bone marrow harvesting. The obtained material is subjected to the processes of erythrocyte depletion, plasma depletion, cryoprotectants addition, total nuclear cells counting, hematopoietic progenitor quantification, analysis of cell viability and freezing. Following that, with radiotherapy or application of cyclophosphamide, the conditioning phase of the patient who is receiving the transplantation is carried out. The bags containing hematopoietic stem cells are then thawed and transplanted into the receptor organism. Support with hematopoietic stem cells allows the use of lethal doses of chemotherapy or radiotherapy and has been shown to considerably raise the disease remission time and survival rate of the canine patients
Resumo:
Nowadays the regular practice of sports is known as a way to obtain a better quality of life. On the other hand, the media has been distorting this idea, determining the ideal body as the hypertrophy phenotype. It is well known that the genetic factor does not allow all individuals to have this body shape. Besides the fact that, the anxiety of these people in obtain quick results, as one of the globalization’s consequence, make use of anabolic steroid to achieve this goal. However the bodybuilding or the strength muscle gain, make anabolic steroids users abuse and in major cases the users do not know the side effects. In front of these considerations, the present study evaluated the effects of the treatment with anabolic steroids and/or high intensity physical training on the corporal developing, the reproductive organs, bone parameters (strength and bone deformation) and seminal parameters as well the social behavior (aggressiveness). In other to obtain the experimental group, male Wistar rats were used, with 75 days old. The groups were divided into: Vehicle Non-Training (NV), Anabolic Steroid-Non-Training (NA), Vehicle-Training (TV) and Anabolic Steroid-Training (TA). These rats received i.m. injections, twice a week, of anabolic steroid (5mg/kg per animal of nandrolona decanoate) or vehicle (the same volume of peanut oil per animal) and the group TV and TA were submitted to physical training three times per week, during eight weeks. The body mass, wet weight of reproductive organs, femur and semen of the different groups were measured. The aggressive test was also realized in two steps: the first, within 4 weeks of the treatment and the other step in the end of the treatment, in this period the animal was isolated. It was not observed alterations in body mass of the groups. Though it was observed a benefic effect on the maximum strength of the... (Complete abstract click electronic access below)
Resumo:
In engineering, for correct designing the structural components required for cyclical stresses, it is necessary to determine a limit of resistance to fatigue, which is the maximum amplitude of the applied tension under which the fatigue failure does not occurs after a certain number cycles. The marine environment is hostile, not only by the high pressure, corrosion, but also by low temperatures. Petrol Production units, composed of the risers (pipelines connecting the oil well to the ship), are dimensioned to remain installed for periods of 20 up to 30 years, and must therefore be prepared to support various efforts, such as tidal, wind currents and everything that is related. This paper focuses on a study on the fatigue behavior of microalloyed steel, API 5L Grade X70, used to transport oil and gas by pipelines. For analysis, we obtained the curves S-N (stress vs. number of cycles) using laboratory data collected from cylindrical longitudinal and transverse specimens used in axial fatigue test in accordance with ASTM E466. The tensile tests and microhardness were performed to characterize the mechanical properties of the samples, and it was found that the values meet the specifications of the standard API 5L. To characterize microstructurally the material, it was also made a metallographic analysis of the steel under study, and the origin of the fatigue crack was investigated with the support of a scanning electron microscope (SEM).
Resumo:
For engineering projects that require high reliability levels, is often not enough know only physical and chemical material properties. It’s necessary understand the failure mode of these materials in operation to ensure security level in the project and establish more stringent criteria in the analysis of structural integrity. Due to this need, aircraft industry has been using aluminum alloys in their designs and projects. “Currently more than 70% of aircraft structures are built of high strength aluminum alloys among which stand out 7075-T6 and 2024-T3 alloys, which are considered basics for being used in the new alloys development.” (PASTOUKHOV & VOORWALD, 1995). Some years ago ALCOA develops Al 2524 alloy that has emerged as refinement of Al 2024 (Al, Cu. Mg) alloy, with purpose of improve fracture toughness and fatigue resistance on structural components. The present research addresses testing of fatigue crack propagation under variable amplitude loading for Al 2024 alloy, observing the interaction effects from application of overhead blocks and plastic zone at the crack tip and makes an analysis of fracture surface images
Resumo:
O alumínio está presente de forma marcante em nosso cotidiano, com várias possibilidades de contaminação para o ser humano e animais, através da ingestão de alimentos ou aditivos presentes nos alimentos ou, também, através do uso de medicamentos. Por apresentar uma forte carga elétrica, um forte poder de polarização e características similares com elementos da hidroxiapatita, o alumínio age como um competidor de nutrientes na matriz óssea, Por isso, ele pode ser causa danos à saúde dos seres vivos, como a osteoporose. Diante disso, a presente pesquisa teve como objetivos estudar a influência de diferentes níveis de alumínio na dieta de codornas poedeiras, sobre as características físicas e químicas de seus ossos. A densidade e a porosidade óssea foram determinadas pelo método de imersão em água, utilizando o princípio de Arquimedes. Os resultados obtidos mostraram que concetrações até 20 mg de alumínio por kg de ração fornecida causa uma diminuição na densidade óssea e volta a aumentar para concetrações maiores que este limiar. A porosidade óssea, segue o inverso da densidade. Ela aumenta com concetrações até 20 mg de alumínio por kg de ração fornecida e volta a diminuir para concetrações menores
Resumo:
Imaging diagnosis is a medical specialty that uses imaging techniques to perform diagnosis. In diagnostic imaging various methods are used such as direct absorption of photons - SPA and DPA, radiographic photometry, the dual-energy radiographic absorptiometry - DEXA, ultrasound, magnetic resonance imaging, computed tomography and optical densitometry in radiographic image. The dog can be considered one of the most widely used animals in the study of bone diseases and searching for a reliable diagnosis, although not an ideal model for the study of osteoporosis, because these animals tend not to develop a decrease in bone mineral density. The objective of this study was to analyze bone density in mongrel dogs from the determination of the variation of density along the radio-ulna bone and also the mean value related to gender, weight and age of individuals. The density analysis carried out showed that for this data set, there is a significant difference in the case of gender and age of the animal and may generalize according to these variables. The only significant difference was found in the weight, which increases bone mass is related to weight gain through the growth of the animal
Resumo:
Nowadays technological trend is based on finding materials that could support low weight with satisfactory mechanical properties and for this reason composite material became a very attractive topic in research projects all over the world. Due to its heterogenic properties, this type of material shows scatter in mechanical test results, especially in cyclic loading. Therefore it is important to predict its fatigue strength behaviour by statistic analysis, once fatigue causes approximately 90% of the failure in structural components. The present work aimed to investigate the fatigue behaviour of the Twill/Cycom 890 composite, which is carbon fiber reinforced with polymeric resin as matrix and manufactured via RTM process (Resin Transfer Molding). All samples were tested in different tensile level in triplicate in order to associate these values. The statistical analysis was conducted with Two-Parameter Weibull Distribution and then evaluated the fatigue life results for the composite. Weibull graphics were used to determine the scale and shape parameters. The S-N curve for the Twill/Cycom composite was drawn and indicated the number of cycles to occur the first damages in this material. The probability of failure was associated with material reliability, as shown in graphics for the different tensile levels and fatigue life. In addition, the laminate was evaluated by ultrasonic inspection showing a regular impregnation. The fractographic analysis conducted by SEM showed failure mechanisms for polymeric composites associated to cyclic loadings ... (Complete abstract click electronic access below)
Resumo:
A proposta desse trabalho surgiu da possibilidade de unir metodologias eficientes para estabelecer valores mais precisos de densitometria óssea. A densidade óssea é um parâmetro biofísico de grande importância experimental e clínica, que permite avaliar o processo de mineralização óssea. O objetivo deste trabalho foi determinar a densidade óssea e o coeficiente de atenuação de massa da radiação gama com o radioisótopo 241Am com fotopico de 59,6 keV em rádios de cães SRD (Sem Raça Definida). Conclui-se a que a densidade média das amostras foi de 1,91 g/cm³ com um desvio padrão de 0,0599. Para o coeficiente de atenuação de massa, o valor médio foi de 0,241 cm2/g, com desvio padrão de 0,0151. Para ambos os parâmetros o coeficiente de variação foi pequeno implicando em uma baixa dispersão. Isso também demonstra que os métodos aplicados foram eficientes e de fácil aplicabilidade
Resumo:
Fracture surfaces express sequences of events of energy release with crack propagation in metal alloys, the evolution of topographic features can indicate the lines of load action, failures during the use or processing. The quantitative fractography is an important tool in the study of fracture surfaces, because it allows their interpretation and characterization. In order to evaluate the effectiveness of the characterization of fracture surfaces grounded on concepts such as selfsimilarity and self-affinity, it used the 15-5PH steel that was characterized by metallographic and tensile tests. The metallography allows the microstructural characterization of this steel and proved the presence of the martensite phase in the slats form and a fine-grained, both in the radial and in the axial direction of the dowel. The tensile test (ASTM E8) of this material allowed the determination of the mechanical properties, so based on the obtained results it was possible to affirm that the 15-5PH steel has high mechanical properties and a good stretch. Besides, the specimens also underwent testing of crack propagation, standardized by ASTM E647-00, thus it was obtained the fracture surfaces for characterization under monofractal and multifractal approaches. In front of all the exposed it was possible to conclude that in all measurements the correlation between the crack tip position and the fractal dimension was established in accordance with changes in the thickness and in the fracture micromechanisms presents. Furthermore, the multifractal approach was more sensitive to these variations allowing a more detailed characterization of the morphology
Resumo:
O presente estudo teve como objetivo identificar a fadiga muscular por meio da amplitude e freqüência do sinal eletromiográfico (EMG) do músculo vasto lateral (VL) e reto femoral (RF) do membro inferior direito, durante protocolo incremental de corrida em esteira e nas contrações isométricas submáximas realizadas no início e após cada velocidade. Participaram deste estudo 07 voluntários saudáveis, do gênero masculino, experientes em corrida na esteira, com idade média de 25 anos (± 4,3), sem antecedentes de doenças músculo-esqueléticas nos membros inferiores e de antropometria semelhante. Foram realizadas três contrações isométricas voluntárias máximas (CIVM = 100%) de extensão do joelho para posterior determinação da contração submáxima de 50% da CIVM (CI-50%). O protocolo de corrida foi composto de um aquecimento de 5 minutos (9 km/h), e após iniciou-se o teste com velocidade inicial de 10 km/h e incremento de 1 km/h a cada 3 minutos, até a exaustão voluntária, havendo uma pausa entre cada velocidade de aproximadamente 2 minutos. Antes do início da corrida e após cada velocidade realizou-se uma contração isométrica com 50% da CIVM (CI-50%) de 5s de duração. No sinal eletromiográfico coletado durante a corrida, os valores de RMS (Root Mean Square) dos músculos VL e RF foram obtidos no período correspondente a um ciclo completo da passada a 10% e 100% do tempo analisado (120 segundos finais de cada velocidade) por meio de rotina específica (Matlab). No sinal eletromiográfico coletado durante as CI-50% (5s), os valores de RMS e FM (freqüência mediana) foram obtidos no período de 1s (intervalo de 1 a 2s). A normalidade dos dados foi determinada através do teste de Shapiro-Wilk. Utilizou-se teste-t de Student para amostras pareadas, e o nível de significância (p) adotado foi de p<0,05. Os resultados...(Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Since the beginning of the railway industry until today, rail wheels are important components to the good working of a railway. For being a critical security item, design and maintenance are done with extremely care to avoid failures. Despite de fact of railway components be projected to support a big number of cyclic solicitation during its life, some accidents still occur. These accidents, despite the low frequency, always have great consequences, drawing in great financial, material, and people losses. Nowadays, railway component failure is relatively low, because it’s been projected to work below the materials Fatigue Resistance Limit, however, with the growing demand of faster trains and higher load for each axle, the occurrence probability is even bigger. This work includes a comparative study of two fabrication processes (casting and forging) applied in the production of rail wheels where it was measured the mechanical properties of traction and fatigue. The study also verified through microstructural analysis, hardness, traction and fatigue tests, statistical analysis of fatigue test results and fractographic analysis that forging process lead to better correlations between fatigue life and mechanical properties, providing more security in railroads, less wagon retention caused by corrective maintenance and smaller operational cost with its use
Resumo:
This work performs a comparative study of fatigue life of riveted lap joints involving classes of drilling which adjustment is made with interference or clearance. For this study, representative specimens of this joints were manufactured with four rivets distributed in two rows. In this context, are presented the test matrix, the methodology employed in performing of the tests, the used mathematical modeling, and that methods that are the basis for the latter are described through the theoretical foundation. Next, are present the results obtained in fatigue tests and images of the region of failure of the specimens. Finally, are present some comments and conclusions related to the results obtained
Resumo:
The oil extraction in deep waters sparked new areas of knowledge, the creation of engineering courses dedicated just to these processes and a wide field of analysisvoiding multiple impacts in case of faults, mainly the economic and environmental. This paper aims to show on the effects and causes of fatigue failure in steel tubes used for oil and gastransportation (linepipe), mainly caused by vortex induced vibrations, or VIV. To make this, through laboratory tests, it found trough the curve Stress versus Number of Cycles, and thus estimating that with a stress value of 350 MPa or less, the fatigue life cycle of the API 5CT T95 (1% Cr) pipe is estimated infinite. It could conclude that the analyzed material has good fatigue failure resistance for offshore use, taking into account only the influence of VIV's, since there are no stress concentrators
Resumo:
This work presents a study that aims to validate the fatigue analyses developed on finite element commercial software, ANSYS Workbench. It was based on mechanical tests development of traction and hardness, to verify the mechanical properties of material that the shaft was manufactured (ABNT 1045 steel), it was developed bend test, with purpose to prove the confiability degree of computational analyses, obtaining the maximum stress in a work condition determined with 40 [kgf] of load applied, and at the end, was developed the fatigue test to obtain the number of cycles that the transmission shaft can support in a work condition with 8 [kgf] of load applied. The results obtained during the work present, have to be quite satisfactory with the theoretically expected
Resumo:
The technological advancement in order to improve the methods of obtaining energy sources such as oil and natural gas is mainly motivated by the recent discovery of oil reserves. So, increasingly , there is a need for a thorough knowledge of the materials used in the manufacture of pipelines for transportation and exploration of oil and natural gas. The steels which follow the API standard (American Petroleum Institute), also known as high strenght low alloy (hsla), are used in the manufacture of these pipes, as they have, with their welded joints, mechanical properties to withstand the working conditions to which these ducts will be submitted . The objective of this study is to evaluate the fatigue behavior in microalloyed steel grade API 5L X80 welded by process HF / ERW . For this, axial fatigue tests to obtain S-N curve (stress vs. number of cycles ) were conducted. To complement the study, it was performed metallographic , fractographic , Vickers hardness tests and tensile tests to characterize the mechanical properties of the steel and check whether the values satisfy the specifications of the API 5L standard . From the fatigue tests , it was concluded that the surface finish influences directly on the fatigue life of the material