975 resultados para FLUCTUATION THEOREM
Resumo:
Generalized fractional partial differential equations have now found wide application for describing important physical phenomena, such as subdiffusive and superdiffusive processes. However, studies of generalized multi-term time and space fractional partial differential equations are still under development. In this paper, the multi-term time-space Caputo-Riesz fractional advection diffusion equations (MT-TSCR-FADE) with Dirichlet nonhomogeneous boundary conditions are considered. The multi-term time-fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0, 1], [1, 2] and [0, 2], respectively. These are called respectively the multi-term time-fractional diffusion terms, the multi-term time-fractional wave terms and the multi-term time-fractional mixed diffusion-wave terms. The space fractional derivatives are defined as Riesz fractional derivatives. Analytical solutions of three types of the MT-TSCR-FADE are derived with Dirichlet boundary conditions. By using Luchko's Theorem (Acta Math. Vietnam., 1999), we proposed some new techniques, such as a spectral representation of the fractional Laplacian operator and the equivalent relationship between fractional Laplacian operator and Riesz fractional derivative, that enabled the derivation of the analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations. © 2012.
Resumo:
In urbanised areas, the flood flows constitute a hazard to populations and infrastructure as illustrated during major floods in 2011. During the 2011 Brisbane River flood, some turbulent velocity data were collected using acoustic Doppler velocimetry in an inundated street. The field deployment showed some unusual features of flood flow in the urban environment. That is, the water elevations and velocities fluctuated with distinctive periods between 50 and 100 s linked with some local topographic effects. The instantaneous velocity data were analysed using a triple decomposition. The velocity fluctuations included a large energy component in the slow fluctuation range, while the turbulent motion components were much smaller. The suspended sediment data showed some significant longitudinal flux. Altogether the results highlighted that the triple decomposition approach originally developed for period flows is well suited to complicated flows in an inundated urban environment.
Resumo:
An energy storage system (ESS) can provide ancillary services such as frequency regulation and reserves, as well as smooth the fluctuations of wind power outputs, and hence improve the security and economics of the power system concerned. The combined operation of a wind farm and an ESS has become a widely accepted operating mode. Hence, it appears necessary to consider this operating mode in transmission system expansion planning, and this is an issue to be systematically addressed in this work. Firstly, the relationship between the cost of the NaS based ESS and its discharging cycle life is analyzed. A strategy for the combined operation of a wind farm and an ESS is next presented, so as to have a good compromise between the operating cost of the ESS and the smoothing effect of the fluctuation of wind power outputs. Then, a transmission system expansion planning model is developed with the sum of the transmission investment costs, the investment and operating costs of ESSs and the punishment cost of lost wind energy as the objective function to be minimized. An improved particle swarm optimization algorithm is employed to solve the developed planning model. Finally, the essential features of the developed model and adopted algorithm are demonstrated by 18-bus and 46-bus test systems.
Resumo:
While substantial research on intelligent transportation systems has focused on the development of novel wireless communication technologies and protocols, relatively little work has sought to fully exploit proximity-based wireless technologies that passengers actually carry with them today. This paper presents the real-world deployment of a system that exploits public transit bus passengers’ Bluetooth-capable devices to capture and reconstruct micro- and macro-passenger behavior. We present supporting evidence that approximately 12% of passengers already carry Bluetooth-enabled devices and that the data collected on these passengers captures with almost 80 % accuracy the daily fluctuation of actual passengers flows. The paper makes three contributions in terms of understanding passenger behavior: We verify that the length of passenger trips is exponentially bounded, the frequency of passenger trips follows a power law distribution, and the microstructure of the network of passenger movements is polycentric.
Resumo:
The reliability analysis is crucial to reducing unexpected down time, severe failures and ever tightened maintenance budget of engineering assets. Hazard based reliability methods are of particular interest as hazard reflects the current health status of engineering assets and their imminent failure risks. Most existing hazard models were constructed using the statistical methods. However, these methods were established largely based on two assumptions: one is the assumption of baseline failure distributions being accurate to the population concerned and the other is the assumption of effects of covariates on hazards. These two assumptions may be difficult to achieve and therefore compromise the effectiveness of hazard models in the application. To address this issue, a non-linear hazard modelling approach is developed in this research using neural networks (NNs), resulting in neural network hazard models (NNHMs), to deal with limitations due to the two assumptions for statistical models. With the success of failure prevention effort, less failure history becomes available for reliability analysis. Involving condition data or covariates is a natural solution to this challenge. A critical issue for involving covariates in reliability analysis is that complete and consistent covariate data are often unavailable in reality due to inconsistent measuring frequencies of multiple covariates, sensor failure, and sparse intrusive measurements. This problem has not been studied adequately in current reliability applications. This research thus investigates such incomplete covariates problem in reliability analysis. Typical approaches to handling incomplete covariates have been studied to investigate their performance and effects on the reliability analysis results. Since these existing approaches could underestimate the variance in regressions and introduce extra uncertainties to reliability analysis, the developed NNHMs are extended to include handling incomplete covariates as an integral part. The extended versions of NNHMs have been validated using simulated bearing data and real data from a liquefied natural gas pump. The results demonstrate the new approach outperforms the typical incomplete covariates handling approaches. Another problem in reliability analysis is that future covariates of engineering assets are generally unavailable. In existing practices for multi-step reliability analysis, historical covariates were used to estimate the future covariates. Covariates of engineering assets, however, are often subject to substantial fluctuation due to the influence of both engineering degradation and changes in environmental settings. The commonly used covariate extrapolation methods thus would not be suitable because of the error accumulation and uncertainty propagation. To overcome this difficulty, instead of directly extrapolating covariate values, projection of covariate states is conducted in this research. The estimated covariate states and unknown covariate values in future running steps of assets constitute an incomplete covariate set which is then analysed by the extended NNHMs. A new assessment function is also proposed to evaluate risks of underestimated and overestimated reliability analysis results. A case study using field data from a paper and pulp mill has been conducted and it demonstrates that this new multi-step reliability analysis procedure is able to generate more accurate analysis results.
Resumo:
This book provides a general framework for specifying, estimating, and testing time series econometric models. Special emphasis is given to estimation by maximum likelihood, but other methods are also discussed, including quasi-maximum likelihood estimation, generalized method of moments estimation, nonparametric estimation, and estimation by simulation. An important advantage of adopting the principle of maximum likelihood as the unifying framework for the book is that many of the estimators and test statistics proposed in econometrics can be derived within a likelihood framework, thereby providing a coherent vehicle for understanding their properties and interrelationships. In contrast to many existing econometric textbooks, which deal mainly with the theoretical properties of estimators and test statistics through a theorem-proof presentation, this book squarely addresses implementation to provide direct conduits between the theory and applied work.
Resumo:
The skill shortage issues have long existed in the construction industry in countries like Australia. Couple this with the lead and lag time between market demand and resultant supply has traditionally seen cyclical fluctuation of skills demand within the construction industry. Skills demand and shortages are generally well documented and can even have a level of predictability in Australia given the tendency to have a delayed reaction to global economic downturns. Sustainability issues in the construction industry have attracted growing public awareness. Traditionally driven by ever increasing, if only gradual, mandated minimum requirements, drive towards sustainable developments is now increasingly being created by the client. As this demand increases, accordingly a demand for people with the skills to provide these services should be felt. This research examines the green skill shortage issues within the context of construction industry. Stakeholders from across relevant sectors of the built environment were engaged to ascertain the industry’s utilisation and demand for ‘green skilled’ personnel. These findings will assist stakeholders within the construction industry in negating the effects of a skills shortage in the event of accelerated demand for sustainable construction.
Resumo:
This paper proposes a new method for stabilizing disturbed power systems using wide area measurement and FACTS devices. The approach focuses on both first swing and damping stability of power systems following large disturbances. A two step control algorithm based on Lyapunov Theorem is proposed to be applied on the controllers to improve the power systems stability. The proposed approach is simulated on two test systems and the results show significant improvement in the first swing and damping stability of the test systems.
Resumo:
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti’s reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.
Resumo:
A multi-secret sharing scheme allows several secrets to be shared amongst a group of participants. In 2005, Shao and Cao developed a verifiable multi-secret sharing scheme where each participant’s share can be used several times which reduces the number of interactions between the dealer and the group members. In addition some secrets may require a higher security level than others involving the need for different threshold values. Recently Chan and Chang designed such a scheme but their construction only allows a single secret to be shared per threshold value. In this article we combine the previous two approaches to design a multiple time verifiable multi-secret sharing scheme where several secrets can be shared for each threshold value. Since the running time is an important factor for practical applications, we will provide a complexity comparison of our combined approach with respect to the previous schemes.
Resumo:
Design of a battery energy storage system (BESS) in a buffer scheme is examined for the purpose of attenuating the effects of unsteady input power from wind farms. The design problem is formulated as maximization of an objective function that measures the economic benefit obtainable from the dispatched power from the wind farm against the cost of the BESS. Solution to the problem results in the determination of the capacity of the BESS to ensure constant dispatched power to the connected grid, while the voltage level across the dc-link of the buffer is kept within preset limits. A computational procedure to determine the BESS capacity and the evaluation of the dc voltage is shown. Illustrative examples using the proposed design method are included.
Resumo:
Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne viral disease characterized by fever, hemorrhagic, kidney damage and hypotension, is caused by different species of hantaviruses [1]. Every year, HFRS affects thousands of people in Asia, and more than 90% of these cases are reported in China [2, 3]. Due to its high fatality, HFRS has attracted considerable research attention, and prior studies have predominantly focused on quantifying HFRS morbidity [4], identifying high risk areas [5] and populations [6], or exploring peak time of HFRS occurrence [3]. To date, no study has assessed the seasonal amplitude of HFRS in China, even though it reveals the seasonal fluctuation and thus may provide pivotal information on the possibility of HFRS outbreaks.
Resumo:
Recent controversy on the quantum dots dephasing mechanisms (between pure and inelastic) is re-examined by isolating the quantum dots from their substrate by using the appropriate limits of the ionization energy theory and the quantum adiabatic theorem. When the phonons in the quantum dots are isolated adiabatically from the phonons in the substrate, the elastic or pure dephasing becomes the dominant mechanism. On the other hand, for the case where the phonons from the substrate are non-adiabatically coupled to the quantum dots, the inelastic dephasing process takes over. This switch-over is due to different elemental composition in quantum dots as compared to its substrate. We also provide unambiguous analysis as to understand why GaAs/AlGaAs quantum dots may only have pure dephasing while InAs/GaAs quantum dots give rise to the inelastic dephasing as the dominant mechanism. It is shown that the elemental composition plays an important role (of both quantum dots and substrate) in evaluating the dephasing mechanisms of quantum dots.
Resumo:
A probabilistic method is proposed to evaluate voltage quality of grid-connected photovoltaic (PV) power systems. The random behavior of solar irradiation is described in statistical terms and the resulting voltage fluctuation probability distribution is then derived. Reactive power capabilities of the PV generators are then analyzed and their operation under constant power factor mode is examined. By utilizing the reactive power capability of the PV-generators to the full, it is shown that network voltage quality can be greatly enhanced.
Resumo:
Tobacco smoking, alcohol drinking, and occupational exposures to polycyclic aromatic hydrocarbons are the major proven risk factors for human head and neck squamous-cell cancer (HNSCC). Major research focus on gene-environment interactions concerning HNSCC has been on genes encoding enzymes of metabolism for tobacco smoke constituents and repair enzymes. To investigate the role of genetically determined individual predispositions in enzymes of xenobiotic metabolism and in repair enzymes under the exogenous risk factor tobacco smoke in the carcinogenesis of HNSCC, we conducted a case-control study on 312 cases and 300 noncancer controls. We focused on the impact of 22 sequence variations in CYP1A1, CYP1B1, CYP2E1, ERCC2/XPD, GSTM1, GSTP1, GSTT1, NAT2, NQO1, and XRCC1. To assess relevant main and interactive effects of polymorphic genes on the susceptibility to HNSCC we used statistical models such as logic regression and a Bayesian version of logic regression. In subgroup analysis of nonsmokers, main effects in ERCC2 (Lys751Gln) C/C genotype and combined ERCC2 (Arg156Arg) C/A and A/A genotypes were predominant. When stratifying for smokers, the data revealed main effects on combined CYP1B1 (Leu432Val) C/G and G/G genotypes, followed by CYP1B1 (Leu432Val) G/G genotype and CYP2E1 (-70G>T) G/T genotype. When fitting logistic regression models including relevant main effects and interactions in smokers, we found relevant associations of CYP1B1 (Leu432Val) C/G genotype and CYP2E1 (-70G>T) G/T genotype (OR, 10.84; 95% CI, 1.64-71.53) as well as CYP1B1 (Leu432Val) G/G genotype and GSTM1 null/null genotype (OR, 11.79; 95% CI, 2.18-63.77) with HNSCC. The findings underline the relevance of genotypes of polymorphic CYP1B1 combined with exposures to tobacco smoke.