942 resultados para Extremal polynomial ultraspherical polynomials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Previous data suggest heterogeneity in laminar distribution of the pathology in the molecular disorder frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP). To study this heterogeneity, we quantified the changes in density across the cortical laminae of neuronal cytoplasmic inclusions, glial inclusions, neuronal intranuclear inclusions, dystrophic neurites, surviving neurones, abnormally enlarged neurones, and vacuoles in regions of the frontal and temporal lobe. Methods: Changes in density of histological features across cortical gyri were studied in 10 sporadic cases of FTLD-TDP using quantitative methods and polynomial curve fitting. Results: Our data suggest that laminar neuropathology in sporadic FTLD-TDP is highly variable. Most commonly, neuronal cytoplasmic inclusions, dystrophic neurites and vacuolation were abundant in the upper laminae and glial inclusions, neuronal intranuclear inclusions, abnormally enlarged neurones, and glial cell nuclei in the lower laminae. TDP-43-immunoreactive inclusions affected more of the cortical profile in longer duration cases; their distribution varied with disease subtype, but was unrelated to Braak tangle score. Different TDP-43-immunoreactive inclusions were not spatially correlated. Conclusions: Laminar distribution of pathological features in 10 sporadic cases of FTLD-TDP is heterogeneous and may be accounted for, in part, by disease subtype and disease duration. In addition, the feedforward and feedback cortico-cortical connections may be compromised in FTLD-TDP. © 2012 The Authors. Neuropathology and Applied Neurobiology © 2012 British Neuropathological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of our work is the verification of tight functional properties of numerical programs, such as showing that a floating-point implementation of Riemann integration computes a close approximation of the exact integral. Programmers and engineers writing such programs will benefit from verification tools that support an expressive specification language and that are highly automated. Our work provides a new method for verification of numerical software, supporting a substantially more expressive language for specifications than other publicly available automated tools. The additional expressivity in the specification language is provided by two constructs. First, the specification can feature inclusions between interval arithmetic expressions. Second, the integral operator from classical analysis can be used in the specifications, where the integration bounds can be arbitrary expressions over real variables. To support our claim of expressivity, we outline the verification of four example programs, including the integration example mentioned earlier. A key component of our method is an algorithm for proving numerical theorems. This algorithm is based on automatic polynomial approximation of non-linear real and real-interval functions defined by expressions. The PolyPaver tool is our implementation of the algorithm and its source code is publicly available. In this paper we report on experiments using PolyPaver that indicate that the additional expressivity does not come at a performance cost when comparing with other publicly available state-of-the-art provers. We also include a scalability study that explores the limits of PolyPaver in proving tight functional specifications of progressively larger randomly generated programs. © 2014 Springer International Publishing Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constacyclic codes with one and the same generator polynomial and distinct length are considered. We give a generalization of the previous result of the first author [4] for constacyclic codes. Suitable maps between vector spaces determined by the lengths of the codes are applied. It is proven that the weight distributions of the coset leaders don’t depend on the word length, but on generator polynomials only. In particular, we prove that every constacyclic code has the same weight distribution of the coset leaders as a suitable cyclic code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present F LQ, a quadratic complexity bound on the values of the positive roots of polynomials. This bound is an extension of FirstLambda, the corresponding linear complexity bound and, consequently, it is derived from Theorem 3 below. We have implemented FLQ in the Vincent-Akritas-Strzeboński Continued Fractions method (VAS-CF) for the isolation of real roots of polynomials and compared its behavior with that of the theoretically proven best bound, LM Q. Experimental results indicate that whereas F LQ runs on average faster (or quite faster) than LM Q, nonetheless the quality of the bounds computed by both is about the same; moreover, it was revealed that when VAS-CF is run on our benchmark polynomials using F LQ, LM Q and min(F LQ, LM Q) all three versions run equally well and, hence, it is inconclusive which one should be used in the VAS-CF method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was presented in part at the 8th International Conference on Finite Fields and Applications Fq^8 , Melbourne, Australia, 9-13 July, 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

∗ Partially supported by INTAS grant 97-1644

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* This work was partially supported by the Bulgarian National Science Fund under Contract No. MM – 503/1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orthonormal polynomials on the real line {pn (λ)} n=0 ... ∞ satisfy the recurrent relation of the form: λn−1 pn−1 (λ) + αn pn (λ) + λn pn+1 (λ) = λpn (λ), n = 0, 1, 2, . . . , where λn > 0, αn ∈ R, n = 0, 1, . . . ; λ−1 = p−1 = 0, λ ∈ C. In this paper we study systems of polynomials {pn (λ)} n=0 ... ∞ which satisfy the equation: αn−2 pn−2 (λ) + βn−1 pn−1 (λ) + γn pn (λ) + βn pn+1 (λ) + αn pn+2 (λ) = λ2 pn (λ), n = 0, 1, 2, . . . , where αn > 0, βn ∈ C, γn ∈ R, n = 0, 1, 2, . . ., α−1 = α−2 = β−1 = 0, p−1 = p−2 = 0, p0 (λ) = 1, p1 (λ) = cλ + b, c > 0, b ∈ C, λ ∈ C. It is shown that they are orthonormal on the real and the imaginary axes in the complex plane ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* Partially supported by Universita` di Bari: progetto “Strutture algebriche, geometriche e descrizione degli invarianti ad esse associate”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate infinite families of integral quadratic polynomials {fk (X)} k∈N and show that, for a fixed k ∈ N and arbitrary X ∈ N, the period length of the simple continued fraction expansion of √fk (X) is constant. Furthermore, we show that the period lengths of √fk (X) go to infinity with k. For each member of the families involved, we show how to determine, in an easy fashion, the fundamental unit of the underlying quadratic field. We also demonstrate how the simple continued fraction ex- pansion of √fk (X) is related to that of √C, where √fk (X) = ak*X^2 +bk*X + C. This continues work in [1]–[4].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* Part of this work was done while the second author was on a visit at Tel Aviv University in March 2001

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dubrovin type equations for the N -gap solution of a completely integrable system associated with a polynomial pencil is constructed and then integrated to a system of functional equations. The approach used to derive those results is a generalization of the familiar process of finding the 1-soliton (1-gap) solution by integrating the ODE obtained from the soliton equation via the substitution u = u(x + λt).